Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemf Structured version   Visualization version   GIF version

Theorem hgt750lemf 33266
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemf.a (𝜑𝐴 ∈ Fin)
hgt750lemf.p (𝜑𝑃 ∈ ℝ)
hgt750lemf.q (𝜑𝑄 ∈ ℝ)
hgt750lemf.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750lemf.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750lemf.0 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
hgt750lemf.1 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
hgt750lemf.2 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
hgt750lemf.3 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
hgt750lemf.4 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
Assertion
Ref Expression
hgt750lemf (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐻   𝑚,𝐾   𝑃,𝑚,𝑛   𝑄,𝑚,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem hgt750lemf
StepHypRef Expression
1 hgt750lemf.a . . 3 (𝜑𝐴 ∈ Fin)
2 vmaf 26468 . . . . . . 7 Λ:ℕ⟶ℝ
32a1i 11 . . . . . 6 ((𝜑𝑛𝐴) → Λ:ℕ⟶ℝ)
4 hgt750lemf.0 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
53, 4ffvelcdmd 7036 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ)
6 rge0ssre 13373 . . . . . 6 (0[,)+∞) ⊆ ℝ
7 hgt750lemf.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
87adantr 481 . . . . . . 7 ((𝜑𝑛𝐴) → 𝐻:ℕ⟶(0[,)+∞))
98, 4ffvelcdmd 7036 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
106, 9sselid 3942 . . . . 5 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℝ)
115, 10remulcld 11185 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
12 hgt750lemf.1 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
133, 12ffvelcdmd 7036 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ)
14 hgt750lemf.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
1514adantr 481 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐾:ℕ⟶(0[,)+∞))
1615, 12ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
176, 16sselid 3942 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℝ)
1813, 17remulcld 11185 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
19 hgt750lemf.2 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
203, 19ffvelcdmd 7036 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ)
2115, 19ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
226, 21sselid 3942 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℝ)
2320, 22remulcld 11185 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
2418, 23remulcld 11185 . . . 4 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
2511, 24remulcld 11185 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
26 hgt750lemf.p . . . . . . 7 (𝜑𝑃 ∈ ℝ)
2726resqcld 14030 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℝ)
28 hgt750lemf.q . . . . . 6 (𝜑𝑄 ∈ ℝ)
2927, 28remulcld 11185 . . . . 5 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℝ)
3029adantr 481 . . . 4 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) ∈ ℝ)
3113, 20remulcld 11185 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
325, 31remulcld 11185 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
3330, 32remulcld 11185 . . 3 ((𝜑𝑛𝐴) → (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
345recnd 11183 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ)
3531recnd 11183 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℂ)
3610recnd 11183 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℂ)
3717, 22remulcld 11185 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
3837recnd 11183 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℂ)
3934, 35, 36, 38mul4d 11367 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))))
4034, 35mulcld 11175 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
4136, 38mulcld 11175 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℂ)
4240, 41mulcomd 11176 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
4313recnd 11183 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ)
4420recnd 11183 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℂ)
4517recnd 11183 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℂ)
4622recnd 11183 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℂ)
4743, 44, 45, 46mul4d 11367 . . . . . 6 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
4847oveq2d 7373 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
4939, 42, 483eqtr3d 2784 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
5010, 37remulcld 11185 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
51 vmage0 26470 . . . . . . 7 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
524, 51syl 17 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘0)))
53 vmage0 26470 . . . . . . . 8 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
5412, 53syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘1)))
55 vmage0 26470 . . . . . . . 8 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
5619, 55syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘2)))
5713, 20, 54, 56mulge0d 11732 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
585, 31, 52, 57mulge0d 11732 . . . . 5 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5928adantr 481 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑄 ∈ ℝ)
6026, 26remulcld 11185 . . . . . . . 8 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
6160adantr 481 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑃 · 𝑃) ∈ ℝ)
62 0xr 11202 . . . . . . . . 9 0 ∈ ℝ*
6362a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ∈ ℝ*)
64 pnfxr 11209 . . . . . . . . 9 +∞ ∈ ℝ*
6564a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → +∞ ∈ ℝ*)
66 icogelb 13315 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐻‘(𝑛‘0)) ∈ (0[,)+∞)) → 0 ≤ (𝐻‘(𝑛‘0)))
6763, 65, 9, 66syl3anc 1371 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (𝐻‘(𝑛‘0)))
68 icogelb 13315 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘1)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘1)))
6963, 65, 16, 68syl3anc 1371 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘1)))
70 icogelb 13315 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘2)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘2)))
7163, 65, 21, 70syl3anc 1371 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘2)))
7217, 22, 69, 71mulge0d 11732 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))
73 fveq2 6842 . . . . . . . . 9 (𝑚 = (𝑛‘0) → (𝐻𝑚) = (𝐻‘(𝑛‘0)))
7473breq1d 5115 . . . . . . . 8 (𝑚 = (𝑛‘0) → ((𝐻𝑚) ≤ 𝑄 ↔ (𝐻‘(𝑛‘0)) ≤ 𝑄))
75 hgt750lemf.4 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
7675ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7776adantr 481 . . . . . . . 8 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7874, 77, 4rspcdva 3582 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ≤ 𝑄)
7926adantr 481 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑃 ∈ ℝ)
80 fveq2 6842 . . . . . . . . . 10 (𝑚 = (𝑛‘1) → (𝐾𝑚) = (𝐾‘(𝑛‘1)))
8180breq1d 5115 . . . . . . . . 9 (𝑚 = (𝑛‘1) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘1)) ≤ 𝑃))
82 hgt750lemf.3 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
8382ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8483adantr 481 . . . . . . . . 9 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8581, 84, 12rspcdva 3582 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ≤ 𝑃)
86 fveq2 6842 . . . . . . . . . 10 (𝑚 = (𝑛‘2) → (𝐾𝑚) = (𝐾‘(𝑛‘2)))
8786breq1d 5115 . . . . . . . . 9 (𝑚 = (𝑛‘2) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘2)) ≤ 𝑃))
8887, 84, 19rspcdva 3582 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ≤ 𝑃)
8917, 79, 22, 79, 69, 71, 85, 88lemul12ad 12097 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ≤ (𝑃 · 𝑃))
9010, 59, 37, 61, 67, 72, 78, 89lemul12ad 12097 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ (𝑄 · (𝑃 · 𝑃)))
9127recnd 11183 . . . . . . . . 9 (𝜑 → (𝑃↑2) ∈ ℂ)
9228recnd 11183 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
9391, 92mulcomd 11176 . . . . . . . 8 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃↑2)))
9426recnd 11183 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
9594sqvald 14048 . . . . . . . . 9 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
9695oveq2d 7373 . . . . . . . 8 (𝜑 → (𝑄 · (𝑃↑2)) = (𝑄 · (𝑃 · 𝑃)))
9793, 96eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9897adantr 481 . . . . . 6 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9990, 98breqtrrd 5133 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ ((𝑃↑2) · 𝑄))
10050, 30, 32, 58, 99lemul1ad 12094 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10149, 100eqbrtrrd 5129 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
1021, 25, 33, 101fsumle 15684 . 2 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10329recnd 11183 . . 3 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℂ)
10432recnd 11183 . . 3 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
1051, 103, 104fsummulc2 15669 . 2 (𝜑 → (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
106102, 105breqtrrd 5133 1 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  *cxr 11188  cle 11190  cn 12153  2c2 12208  [,)cico 13266  cexp 13967  Σcsu 15570  Λcvma 26441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-vma 26447
This theorem is referenced by:  hgt750leme  33271
  Copyright terms: Public domain W3C validator