Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemf Structured version   Visualization version   GIF version

Theorem hgt750lemf 34630
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemf.a (𝜑𝐴 ∈ Fin)
hgt750lemf.p (𝜑𝑃 ∈ ℝ)
hgt750lemf.q (𝜑𝑄 ∈ ℝ)
hgt750lemf.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750lemf.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750lemf.0 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
hgt750lemf.1 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
hgt750lemf.2 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
hgt750lemf.3 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
hgt750lemf.4 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
Assertion
Ref Expression
hgt750lemf (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐻   𝑚,𝐾   𝑃,𝑚,𝑛   𝑄,𝑚,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem hgt750lemf
StepHypRef Expression
1 hgt750lemf.a . . 3 (𝜑𝐴 ∈ Fin)
2 vmaf 27180 . . . . . . 7 Λ:ℕ⟶ℝ
32a1i 11 . . . . . 6 ((𝜑𝑛𝐴) → Λ:ℕ⟶ℝ)
4 hgt750lemf.0 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
53, 4ffvelcdmd 7119 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ)
6 rge0ssre 13516 . . . . . 6 (0[,)+∞) ⊆ ℝ
7 hgt750lemf.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
87adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝐻:ℕ⟶(0[,)+∞))
98, 4ffvelcdmd 7119 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
106, 9sselid 4006 . . . . 5 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℝ)
115, 10remulcld 11320 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
12 hgt750lemf.1 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
133, 12ffvelcdmd 7119 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ)
14 hgt750lemf.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
1514adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐾:ℕ⟶(0[,)+∞))
1615, 12ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
176, 16sselid 4006 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℝ)
1813, 17remulcld 11320 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
19 hgt750lemf.2 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
203, 19ffvelcdmd 7119 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ)
2115, 19ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
226, 21sselid 4006 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℝ)
2320, 22remulcld 11320 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
2418, 23remulcld 11320 . . . 4 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
2511, 24remulcld 11320 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
26 hgt750lemf.p . . . . . . 7 (𝜑𝑃 ∈ ℝ)
2726resqcld 14175 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℝ)
28 hgt750lemf.q . . . . . 6 (𝜑𝑄 ∈ ℝ)
2927, 28remulcld 11320 . . . . 5 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℝ)
3029adantr 480 . . . 4 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) ∈ ℝ)
3113, 20remulcld 11320 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
325, 31remulcld 11320 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
3330, 32remulcld 11320 . . 3 ((𝜑𝑛𝐴) → (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
345recnd 11318 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ)
3531recnd 11318 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℂ)
3610recnd 11318 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℂ)
3717, 22remulcld 11320 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
3837recnd 11318 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℂ)
3934, 35, 36, 38mul4d 11502 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))))
4034, 35mulcld 11310 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
4136, 38mulcld 11310 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℂ)
4240, 41mulcomd 11311 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
4313recnd 11318 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ)
4420recnd 11318 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℂ)
4517recnd 11318 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℂ)
4622recnd 11318 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℂ)
4743, 44, 45, 46mul4d 11502 . . . . . 6 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
4847oveq2d 7464 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
4939, 42, 483eqtr3d 2788 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
5010, 37remulcld 11320 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
51 vmage0 27182 . . . . . . 7 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
524, 51syl 17 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘0)))
53 vmage0 27182 . . . . . . . 8 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
5412, 53syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘1)))
55 vmage0 27182 . . . . . . . 8 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
5619, 55syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘2)))
5713, 20, 54, 56mulge0d 11867 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
585, 31, 52, 57mulge0d 11867 . . . . 5 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5928adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑄 ∈ ℝ)
6026, 26remulcld 11320 . . . . . . . 8 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
6160adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑃 · 𝑃) ∈ ℝ)
62 0xr 11337 . . . . . . . . 9 0 ∈ ℝ*
6362a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ∈ ℝ*)
64 pnfxr 11344 . . . . . . . . 9 +∞ ∈ ℝ*
6564a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → +∞ ∈ ℝ*)
66 icogelb 13458 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐻‘(𝑛‘0)) ∈ (0[,)+∞)) → 0 ≤ (𝐻‘(𝑛‘0)))
6763, 65, 9, 66syl3anc 1371 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (𝐻‘(𝑛‘0)))
68 icogelb 13458 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘1)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘1)))
6963, 65, 16, 68syl3anc 1371 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘1)))
70 icogelb 13458 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘2)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘2)))
7163, 65, 21, 70syl3anc 1371 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘2)))
7217, 22, 69, 71mulge0d 11867 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))
73 fveq2 6920 . . . . . . . . 9 (𝑚 = (𝑛‘0) → (𝐻𝑚) = (𝐻‘(𝑛‘0)))
7473breq1d 5176 . . . . . . . 8 (𝑚 = (𝑛‘0) → ((𝐻𝑚) ≤ 𝑄 ↔ (𝐻‘(𝑛‘0)) ≤ 𝑄))
75 hgt750lemf.4 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
7675ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7776adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7874, 77, 4rspcdva 3636 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ≤ 𝑄)
7926adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑃 ∈ ℝ)
80 fveq2 6920 . . . . . . . . . 10 (𝑚 = (𝑛‘1) → (𝐾𝑚) = (𝐾‘(𝑛‘1)))
8180breq1d 5176 . . . . . . . . 9 (𝑚 = (𝑛‘1) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘1)) ≤ 𝑃))
82 hgt750lemf.3 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
8382ralrimiva 3152 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8581, 84, 12rspcdva 3636 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ≤ 𝑃)
86 fveq2 6920 . . . . . . . . . 10 (𝑚 = (𝑛‘2) → (𝐾𝑚) = (𝐾‘(𝑛‘2)))
8786breq1d 5176 . . . . . . . . 9 (𝑚 = (𝑛‘2) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘2)) ≤ 𝑃))
8887, 84, 19rspcdva 3636 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ≤ 𝑃)
8917, 79, 22, 79, 69, 71, 85, 88lemul12ad 12237 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ≤ (𝑃 · 𝑃))
9010, 59, 37, 61, 67, 72, 78, 89lemul12ad 12237 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ (𝑄 · (𝑃 · 𝑃)))
9127recnd 11318 . . . . . . . . 9 (𝜑 → (𝑃↑2) ∈ ℂ)
9228recnd 11318 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
9391, 92mulcomd 11311 . . . . . . . 8 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃↑2)))
9426recnd 11318 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
9594sqvald 14193 . . . . . . . . 9 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
9695oveq2d 7464 . . . . . . . 8 (𝜑 → (𝑄 · (𝑃↑2)) = (𝑄 · (𝑃 · 𝑃)))
9793, 96eqtrd 2780 . . . . . . 7 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9897adantr 480 . . . . . 6 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9990, 98breqtrrd 5194 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ ((𝑃↑2) · 𝑄))
10050, 30, 32, 58, 99lemul1ad 12234 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10149, 100eqbrtrrd 5190 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
1021, 25, 33, 101fsumle 15847 . 2 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10329recnd 11318 . . 3 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℂ)
10432recnd 11318 . . 3 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
1051, 103, 104fsummulc2 15832 . 2 (𝜑 → (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
106102, 105breqtrrd 5194 1 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  *cxr 11323  cle 11325  cn 12293  2c2 12348  [,)cico 13409  cexp 14112  Σcsu 15734  Λcvma 27153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159
This theorem is referenced by:  hgt750leme  34635
  Copyright terms: Public domain W3C validator