Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemf Structured version   Visualization version   GIF version

Theorem hgt750lemf 32533
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemf.a (𝜑𝐴 ∈ Fin)
hgt750lemf.p (𝜑𝑃 ∈ ℝ)
hgt750lemf.q (𝜑𝑄 ∈ ℝ)
hgt750lemf.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750lemf.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750lemf.0 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
hgt750lemf.1 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
hgt750lemf.2 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
hgt750lemf.3 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
hgt750lemf.4 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
Assertion
Ref Expression
hgt750lemf (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐻   𝑚,𝐾   𝑃,𝑚,𝑛   𝑄,𝑚,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem hgt750lemf
StepHypRef Expression
1 hgt750lemf.a . . 3 (𝜑𝐴 ∈ Fin)
2 vmaf 26173 . . . . . . 7 Λ:ℕ⟶ℝ
32a1i 11 . . . . . 6 ((𝜑𝑛𝐴) → Λ:ℕ⟶ℝ)
4 hgt750lemf.0 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
53, 4ffvelrnd 6944 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ)
6 rge0ssre 13117 . . . . . 6 (0[,)+∞) ⊆ ℝ
7 hgt750lemf.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
87adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝐻:ℕ⟶(0[,)+∞))
98, 4ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
106, 9sselid 3915 . . . . 5 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℝ)
115, 10remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
12 hgt750lemf.1 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
133, 12ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ)
14 hgt750lemf.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
1514adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐾:ℕ⟶(0[,)+∞))
1615, 12ffvelrnd 6944 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
176, 16sselid 3915 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℝ)
1813, 17remulcld 10936 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
19 hgt750lemf.2 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
203, 19ffvelrnd 6944 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ)
2115, 19ffvelrnd 6944 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
226, 21sselid 3915 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℝ)
2320, 22remulcld 10936 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
2418, 23remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
2511, 24remulcld 10936 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
26 hgt750lemf.p . . . . . . 7 (𝜑𝑃 ∈ ℝ)
2726resqcld 13893 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℝ)
28 hgt750lemf.q . . . . . 6 (𝜑𝑄 ∈ ℝ)
2927, 28remulcld 10936 . . . . 5 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℝ)
3029adantr 480 . . . 4 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) ∈ ℝ)
3113, 20remulcld 10936 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
325, 31remulcld 10936 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
3330, 32remulcld 10936 . . 3 ((𝜑𝑛𝐴) → (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
345recnd 10934 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ)
3531recnd 10934 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℂ)
3610recnd 10934 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℂ)
3717, 22remulcld 10936 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
3837recnd 10934 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℂ)
3934, 35, 36, 38mul4d 11117 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))))
4034, 35mulcld 10926 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
4136, 38mulcld 10926 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℂ)
4240, 41mulcomd 10927 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
4313recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ)
4420recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℂ)
4517recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℂ)
4622recnd 10934 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℂ)
4743, 44, 45, 46mul4d 11117 . . . . . 6 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
4847oveq2d 7271 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
4939, 42, 483eqtr3d 2786 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
5010, 37remulcld 10936 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
51 vmage0 26175 . . . . . . 7 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
524, 51syl 17 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘0)))
53 vmage0 26175 . . . . . . . 8 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
5412, 53syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘1)))
55 vmage0 26175 . . . . . . . 8 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
5619, 55syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘2)))
5713, 20, 54, 56mulge0d 11482 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
585, 31, 52, 57mulge0d 11482 . . . . 5 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5928adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑄 ∈ ℝ)
6026, 26remulcld 10936 . . . . . . . 8 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
6160adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑃 · 𝑃) ∈ ℝ)
62 0xr 10953 . . . . . . . . 9 0 ∈ ℝ*
6362a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ∈ ℝ*)
64 pnfxr 10960 . . . . . . . . 9 +∞ ∈ ℝ*
6564a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → +∞ ∈ ℝ*)
66 icogelb 13059 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐻‘(𝑛‘0)) ∈ (0[,)+∞)) → 0 ≤ (𝐻‘(𝑛‘0)))
6763, 65, 9, 66syl3anc 1369 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (𝐻‘(𝑛‘0)))
68 icogelb 13059 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘1)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘1)))
6963, 65, 16, 68syl3anc 1369 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘1)))
70 icogelb 13059 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘2)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘2)))
7163, 65, 21, 70syl3anc 1369 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘2)))
7217, 22, 69, 71mulge0d 11482 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))
73 fveq2 6756 . . . . . . . . 9 (𝑚 = (𝑛‘0) → (𝐻𝑚) = (𝐻‘(𝑛‘0)))
7473breq1d 5080 . . . . . . . 8 (𝑚 = (𝑛‘0) → ((𝐻𝑚) ≤ 𝑄 ↔ (𝐻‘(𝑛‘0)) ≤ 𝑄))
75 hgt750lemf.4 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
7675ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7776adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7874, 77, 4rspcdva 3554 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ≤ 𝑄)
7926adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑃 ∈ ℝ)
80 fveq2 6756 . . . . . . . . . 10 (𝑚 = (𝑛‘1) → (𝐾𝑚) = (𝐾‘(𝑛‘1)))
8180breq1d 5080 . . . . . . . . 9 (𝑚 = (𝑛‘1) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘1)) ≤ 𝑃))
82 hgt750lemf.3 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
8382ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8581, 84, 12rspcdva 3554 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ≤ 𝑃)
86 fveq2 6756 . . . . . . . . . 10 (𝑚 = (𝑛‘2) → (𝐾𝑚) = (𝐾‘(𝑛‘2)))
8786breq1d 5080 . . . . . . . . 9 (𝑚 = (𝑛‘2) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘2)) ≤ 𝑃))
8887, 84, 19rspcdva 3554 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ≤ 𝑃)
8917, 79, 22, 79, 69, 71, 85, 88lemul12ad 11847 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ≤ (𝑃 · 𝑃))
9010, 59, 37, 61, 67, 72, 78, 89lemul12ad 11847 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ (𝑄 · (𝑃 · 𝑃)))
9127recnd 10934 . . . . . . . . 9 (𝜑 → (𝑃↑2) ∈ ℂ)
9228recnd 10934 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
9391, 92mulcomd 10927 . . . . . . . 8 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃↑2)))
9426recnd 10934 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
9594sqvald 13789 . . . . . . . . 9 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
9695oveq2d 7271 . . . . . . . 8 (𝜑 → (𝑄 · (𝑃↑2)) = (𝑄 · (𝑃 · 𝑃)))
9793, 96eqtrd 2778 . . . . . . 7 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9897adantr 480 . . . . . 6 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9990, 98breqtrrd 5098 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ ((𝑃↑2) · 𝑄))
10050, 30, 32, 58, 99lemul1ad 11844 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10149, 100eqbrtrrd 5094 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
1021, 25, 33, 101fsumle 15439 . 2 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10329recnd 10934 . . 3 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℂ)
10432recnd 10934 . . 3 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
1051, 103, 104fsummulc2 15424 . 2 (𝜑 → (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
106102, 105breqtrrd 5098 1 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  cn 11903  2c2 11958  [,)cico 13010  cexp 13710  Σcsu 15325  Λcvma 26146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152
This theorem is referenced by:  hgt750leme  32538
  Copyright terms: Public domain W3C validator