Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemf Structured version   Visualization version   GIF version

Theorem hgt750lemf 34666
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemf.a (𝜑𝐴 ∈ Fin)
hgt750lemf.p (𝜑𝑃 ∈ ℝ)
hgt750lemf.q (𝜑𝑄 ∈ ℝ)
hgt750lemf.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750lemf.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750lemf.0 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
hgt750lemf.1 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
hgt750lemf.2 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
hgt750lemf.3 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
hgt750lemf.4 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
Assertion
Ref Expression
hgt750lemf (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐻   𝑚,𝐾   𝑃,𝑚,𝑛   𝑄,𝑚,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem hgt750lemf
StepHypRef Expression
1 hgt750lemf.a . . 3 (𝜑𝐴 ∈ Fin)
2 vmaf 27056 . . . . . . 7 Λ:ℕ⟶ℝ
32a1i 11 . . . . . 6 ((𝜑𝑛𝐴) → Λ:ℕ⟶ℝ)
4 hgt750lemf.0 . . . . . 6 ((𝜑𝑛𝐴) → (𝑛‘0) ∈ ℕ)
53, 4ffvelcdmd 7018 . . . . 5 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ)
6 rge0ssre 13356 . . . . . 6 (0[,)+∞) ⊆ ℝ
7 hgt750lemf.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
87adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝐻:ℕ⟶(0[,)+∞))
98, 4ffvelcdmd 7018 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
106, 9sselid 3927 . . . . 5 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℝ)
115, 10remulcld 11142 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
12 hgt750lemf.1 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘1) ∈ ℕ)
133, 12ffvelcdmd 7018 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ)
14 hgt750lemf.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
1514adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐾:ℕ⟶(0[,)+∞))
1615, 12ffvelcdmd 7018 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
176, 16sselid 3927 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℝ)
1813, 17remulcld 11142 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
19 hgt750lemf.2 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑛‘2) ∈ ℕ)
203, 19ffvelcdmd 7018 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ)
2115, 19ffvelcdmd 7018 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
226, 21sselid 3927 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℝ)
2320, 22remulcld 11142 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
2418, 23remulcld 11142 . . . 4 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
2511, 24remulcld 11142 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
26 hgt750lemf.p . . . . . . 7 (𝜑𝑃 ∈ ℝ)
2726resqcld 14032 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℝ)
28 hgt750lemf.q . . . . . 6 (𝜑𝑄 ∈ ℝ)
2927, 28remulcld 11142 . . . . 5 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℝ)
3029adantr 480 . . . 4 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) ∈ ℝ)
3113, 20remulcld 11142 . . . . 5 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
325, 31remulcld 11142 . . . 4 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
3330, 32remulcld 11142 . . 3 ((𝜑𝑛𝐴) → (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
345recnd 11140 . . . . . 6 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ)
3531recnd 11140 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℂ)
3610recnd 11140 . . . . . 6 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ∈ ℂ)
3717, 22remulcld 11142 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
3837recnd 11140 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ∈ ℂ)
3934, 35, 36, 38mul4d 11325 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))))
4034, 35mulcld 11132 . . . . . 6 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
4136, 38mulcld 11132 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℂ)
4240, 41mulcomd 11133 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) · ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
4313recnd 11140 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ)
4420recnd 11140 . . . . . . 7 ((𝜑𝑛𝐴) → (Λ‘(𝑛‘2)) ∈ ℂ)
4517recnd 11140 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ∈ ℂ)
4622recnd 11140 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ∈ ℂ)
4743, 44, 45, 46mul4d 11325 . . . . . 6 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
4847oveq2d 7362 . . . . 5 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
4939, 42, 483eqtr3d 2774 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
5010, 37remulcld 11142 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
51 vmage0 27058 . . . . . . 7 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
524, 51syl 17 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘0)))
53 vmage0 27058 . . . . . . . 8 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
5412, 53syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘1)))
55 vmage0 27058 . . . . . . . 8 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
5619, 55syl 17 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (Λ‘(𝑛‘2)))
5713, 20, 54, 56mulge0d 11694 . . . . . 6 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
585, 31, 52, 57mulge0d 11694 . . . . 5 ((𝜑𝑛𝐴) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5928adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑄 ∈ ℝ)
6026, 26remulcld 11142 . . . . . . . 8 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
6160adantr 480 . . . . . . 7 ((𝜑𝑛𝐴) → (𝑃 · 𝑃) ∈ ℝ)
62 0xr 11159 . . . . . . . . 9 0 ∈ ℝ*
6362a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ∈ ℝ*)
64 pnfxr 11166 . . . . . . . . 9 +∞ ∈ ℝ*
6564a1i 11 . . . . . . . 8 ((𝜑𝑛𝐴) → +∞ ∈ ℝ*)
66 icogelb 13296 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐻‘(𝑛‘0)) ∈ (0[,)+∞)) → 0 ≤ (𝐻‘(𝑛‘0)))
6763, 65, 9, 66syl3anc 1373 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ (𝐻‘(𝑛‘0)))
68 icogelb 13296 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘1)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘1)))
6963, 65, 16, 68syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘1)))
70 icogelb 13296 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐾‘(𝑛‘2)) ∈ (0[,)+∞)) → 0 ≤ (𝐾‘(𝑛‘2)))
7163, 65, 21, 70syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝐴) → 0 ≤ (𝐾‘(𝑛‘2)))
7217, 22, 69, 71mulge0d 11694 . . . . . . 7 ((𝜑𝑛𝐴) → 0 ≤ ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))))
73 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑛‘0) → (𝐻𝑚) = (𝐻‘(𝑛‘0)))
7473breq1d 5099 . . . . . . . 8 (𝑚 = (𝑛‘0) → ((𝐻𝑚) ≤ 𝑄 ↔ (𝐻‘(𝑛‘0)) ≤ 𝑄))
75 hgt750lemf.4 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ 𝑄)
7675ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7776adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐻𝑚) ≤ 𝑄)
7874, 77, 4rspcdva 3573 . . . . . . 7 ((𝜑𝑛𝐴) → (𝐻‘(𝑛‘0)) ≤ 𝑄)
7926adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑃 ∈ ℝ)
80 fveq2 6822 . . . . . . . . . 10 (𝑚 = (𝑛‘1) → (𝐾𝑚) = (𝐾‘(𝑛‘1)))
8180breq1d 5099 . . . . . . . . 9 (𝑚 = (𝑛‘1) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘1)) ≤ 𝑃))
82 hgt750lemf.3 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ 𝑃)
8382ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → ∀𝑚 ∈ ℕ (𝐾𝑚) ≤ 𝑃)
8581, 84, 12rspcdva 3573 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘1)) ≤ 𝑃)
86 fveq2 6822 . . . . . . . . . 10 (𝑚 = (𝑛‘2) → (𝐾𝑚) = (𝐾‘(𝑛‘2)))
8786breq1d 5099 . . . . . . . . 9 (𝑚 = (𝑛‘2) → ((𝐾𝑚) ≤ 𝑃 ↔ (𝐾‘(𝑛‘2)) ≤ 𝑃))
8887, 84, 19rspcdva 3573 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝑛‘2)) ≤ 𝑃)
8917, 79, 22, 79, 69, 71, 85, 88lemul12ad 12064 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2))) ≤ (𝑃 · 𝑃))
9010, 59, 37, 61, 67, 72, 78, 89lemul12ad 12064 . . . . . 6 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ (𝑄 · (𝑃 · 𝑃)))
9127recnd 11140 . . . . . . . . 9 (𝜑 → (𝑃↑2) ∈ ℂ)
9228recnd 11140 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
9391, 92mulcomd 11133 . . . . . . . 8 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃↑2)))
9426recnd 11140 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
9594sqvald 14050 . . . . . . . . 9 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
9695oveq2d 7362 . . . . . . . 8 (𝜑 → (𝑄 · (𝑃↑2)) = (𝑄 · (𝑃 · 𝑃)))
9793, 96eqtrd 2766 . . . . . . 7 (𝜑 → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9897adantr 480 . . . . . 6 ((𝜑𝑛𝐴) → ((𝑃↑2) · 𝑄) = (𝑄 · (𝑃 · 𝑃)))
9990, 98breqtrrd 5117 . . . . 5 ((𝜑𝑛𝐴) → ((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) ≤ ((𝑃↑2) · 𝑄))
10050, 30, 32, 58, 99lemul1ad 12061 . . . 4 ((𝜑𝑛𝐴) → (((𝐻‘(𝑛‘0)) · ((𝐾‘(𝑛‘1)) · (𝐾‘(𝑛‘2)))) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10149, 100eqbrtrrd 5113 . . 3 ((𝜑𝑛𝐴) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
1021, 25, 33, 101fsumle 15706 . 2 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
10329recnd 11140 . . 3 (𝜑 → ((𝑃↑2) · 𝑄) ∈ ℂ)
10432recnd 11140 . . 3 ((𝜑𝑛𝐴) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
1051, 103, 104fsummulc2 15691 . 2 (𝜑 → (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑛𝐴 (((𝑃↑2) · 𝑄) · ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
106102, 105breqtrrd 5117 1 (𝜑 → Σ𝑛𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  +∞cpnf 11143  *cxr 11145  cle 11147  cn 12125  2c2 12180  [,)cico 13247  cexp 13968  Σcsu 15593  Λcvma 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-vma 27035
This theorem is referenced by:  hgt750leme  34671
  Copyright terms: Public domain W3C validator