Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Visualization version   GIF version

Theorem rmxyadd 42878
Description: Addition formula for X and Y sequences. See rmxadd 42884 and rmyadd 42888 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
2 zaddcl 12683 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
323adant1 1130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4 rmxyval 42872 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
51, 3, 4syl2anc 583 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
6 eluzelz 12913 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
763ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
87zcnd 12748 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
9 zq 13019 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
10 qsqcl 14180 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
117, 9, 103syl 18 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℚ)
12 zssq 13021 . . . . . . . . . . 11 ℤ ⊆ ℚ
13 1z 12673 . . . . . . . . . . 11 1 ∈ ℤ
1412, 13sselii 4005 . . . . . . . . . 10 1 ∈ ℚ
1514a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℚ)
16 qsubcl 13033 . . . . . . . . 9 (((𝐴↑2) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝐴↑2) − 1) ∈ ℚ)
1711, 15, 16syl2anc 583 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℚ)
18 qcn 13028 . . . . . . . 8 (((𝐴↑2) − 1) ∈ ℚ → ((𝐴↑2) − 1) ∈ ℂ)
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2019sqrtcld 15486 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
218, 20addcld 11309 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
22 rmbaserp 42876 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
2322rpne0d 13104 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
24233ad2ant1 1133 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
25 simp2 1137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
26 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
27 expaddz 14157 . . . . 5 ((((𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
2821, 24, 25, 26, 27syl22anc 838 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
29 frmx 42870 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
3130, 1, 25fovcdmd 7622 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0)
3231nn0cnd 12615 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ)
33 frmy 42871 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3433a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
3534, 1, 25fovcdmd 7622 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3635zcnd 12748 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ)
3720, 36mulcld 11310 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)) ∈ ℂ)
3830, 1, 26fovcdmd 7622 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3938nn0cnd 12615 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
4034, 1, 26fovcdmd 7622 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
4140zcnd 12748 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
4220, 41mulcld 11310 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
4332, 37, 39, 42muladdd 11748 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))))
44 rmxyval 42872 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
451, 25, 44syl2anc 583 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
46 rmxyval 42872 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
471, 26, 46syl2anc 583 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
4845, 47oveq12d 7466 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
4943, 48eqtr3d 2782 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
5020, 41, 20, 36mul4d 11502 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))))
5119msqsqrtd 15489 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) = ((𝐴↑2) − 1))
5241, 36mulcomd 11311 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))
5351, 52oveq12d 7466 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5450, 53eqtrd 2780 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5554oveq2d 7464 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))))
5632, 20, 41mul12d 11499 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
5739, 20, 36mul12d 11499 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))))
5856, 57oveq12d 7466 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
5932, 41mulcld 11310 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℂ)
6039, 36mulcld 11310 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ)
6120, 59, 60adddid 11314 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
6259, 60addcomd 11492 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6339, 36mulcomd 11311 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)))
6463oveq1d 7463 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6562, 64eqtrd 2780 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6665oveq2d 7464 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6758, 61, 663eqtr2d 2786 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6855, 67oveq12d 7466 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
6928, 49, 683eqtr2d 2786 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
705, 69eqtrd 2780 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
71 rmspecsqrtnq 42862 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
72713ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
73 nn0ssq 13022 . . . 4 0 ⊆ ℚ
7430, 1, 3fovcdmd 7622 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℕ0)
7573, 74sselid 4006 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ)
7634, 1, 3fovcdmd 7622 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℤ)
7712, 76sselid 4006 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ)
7873, 31sselid 4006 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℚ)
7973, 38sselid 4006 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
80 qmulcl 13032 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8178, 79, 80syl2anc 583 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8212, 35sselid 4006 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℚ)
8312, 40sselid 4006 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
84 qmulcl 13032 . . . . . 6 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
8582, 83, 84syl2anc 583 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
86 qmulcl 13032 . . . . 5 ((((𝐴↑2) − 1) ∈ ℚ ∧ ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
8717, 85, 86syl2anc 583 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
88 qaddcl 13030 . . . 4 ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
8981, 87, 88syl2anc 583 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
90 qmulcl 13032 . . . . 5 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
9182, 79, 90syl2anc 583 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
92 qmulcl 13032 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
9378, 83, 92syl2anc 583 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
94 qaddcl 13030 . . . 4 ((((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
9591, 93, 94syl2anc 583 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
96 qirropth 42864 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ ∧ (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ) ∧ ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ ∧ (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9772, 75, 77, 89, 95, 96syl122anc 1379 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9870, 97mpbid 232 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cq 13013  cexp 14112  csqrt 15282   Xrm crmx 42856   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  rmxadd  42884  rmyadd  42888
  Copyright terms: Public domain W3C validator