Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Visualization version   GIF version

Theorem rmxyadd 39380
Description: Addition formula for X and Y sequences. See rmxadd 39386 and rmyadd 39390 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 1130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
2 zaddcl 12014 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
323adant1 1124 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4 rmxyval 39374 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
51, 3, 4syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
6 eluzelz 12245 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
763ad2ant1 1127 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
87zcnd 12080 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
9 zq 12346 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
10 qsqcl 13488 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
117, 9, 103syl 18 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℚ)
12 zssq 12348 . . . . . . . . . . 11 ℤ ⊆ ℚ
13 1z 12004 . . . . . . . . . . 11 1 ∈ ℤ
1412, 13sselii 3967 . . . . . . . . . 10 1 ∈ ℚ
1514a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℚ)
16 qsubcl 12360 . . . . . . . . 9 (((𝐴↑2) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝐴↑2) − 1) ∈ ℚ)
1711, 15, 16syl2anc 584 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℚ)
18 qcn 12355 . . . . . . . 8 (((𝐴↑2) − 1) ∈ ℚ → ((𝐴↑2) − 1) ∈ ℂ)
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2019sqrtcld 14790 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
218, 20addcld 10652 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
22 rmbaserp 39378 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
2322rpne0d 12429 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
24233ad2ant1 1127 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
25 simp2 1131 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
26 simp3 1132 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
27 expaddz 13466 . . . . 5 ((((𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
2821, 24, 25, 26, 27syl22anc 836 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
29 frmx 39372 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
3130, 1, 25fovrnd 7313 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0)
3231nn0cnd 11949 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ)
33 frmy 39373 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3433a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
3534, 1, 25fovrnd 7313 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3635zcnd 12080 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ)
3720, 36mulcld 10653 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)) ∈ ℂ)
3830, 1, 26fovrnd 7313 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3938nn0cnd 11949 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
4034, 1, 26fovrnd 7313 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
4140zcnd 12080 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
4220, 41mulcld 10653 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
4332, 37, 39, 42muladdd 11090 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))))
44 rmxyval 39374 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
451, 25, 44syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
46 rmxyval 39374 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
471, 26, 46syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
4845, 47oveq12d 7169 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
4943, 48eqtr3d 2862 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
5020, 41, 20, 36mul4d 10844 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))))
5119msqsqrtd 14793 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) = ((𝐴↑2) − 1))
5241, 36mulcomd 10654 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))
5351, 52oveq12d 7169 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5450, 53eqtrd 2860 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5554oveq2d 7167 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))))
5632, 20, 41mul12d 10841 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
5739, 20, 36mul12d 10841 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))))
5856, 57oveq12d 7169 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
5932, 41mulcld 10653 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℂ)
6039, 36mulcld 10653 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ)
6120, 59, 60adddid 10657 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
6259, 60addcomd 10834 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6339, 36mulcomd 10654 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)))
6463oveq1d 7166 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6562, 64eqtrd 2860 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6665oveq2d 7167 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6758, 61, 663eqtr2d 2866 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6855, 67oveq12d 7169 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
6928, 49, 683eqtr2d 2866 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
705, 69eqtrd 2860 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
71 rmspecsqrtnq 39365 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
72713ad2ant1 1127 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
73 nn0ssq 12349 . . . 4 0 ⊆ ℚ
7430, 1, 3fovrnd 7313 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℕ0)
7573, 74sseldi 3968 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ)
7634, 1, 3fovrnd 7313 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℤ)
7712, 76sseldi 3968 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ)
7873, 31sseldi 3968 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℚ)
7973, 38sseldi 3968 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
80 qmulcl 12359 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8178, 79, 80syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8212, 35sseldi 3968 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℚ)
8312, 40sseldi 3968 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
84 qmulcl 12359 . . . . . 6 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
8582, 83, 84syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
86 qmulcl 12359 . . . . 5 ((((𝐴↑2) − 1) ∈ ℚ ∧ ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
8717, 85, 86syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
88 qaddcl 12357 . . . 4 ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
8981, 87, 88syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
90 qmulcl 12359 . . . . 5 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
9182, 79, 90syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
92 qmulcl 12359 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
9378, 83, 92syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
94 qaddcl 12357 . . . 4 ((((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
9591, 93, 94syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
96 qirropth 39367 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ ∧ (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ) ∧ ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ ∧ (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9772, 75, 77, 89, 95, 96syl122anc 1373 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9870, 97mpbid 233 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  cdif 3936   × cxp 5551  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  2c2 11684  0cn0 11889  cz 11973  cuz 12235  cq 12340  cexp 13422  csqrt 14585   Xrm crmx 39359   Yrm crmy 39360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15836  df-numer 16067  df-denom 16068  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-limc 24379  df-dv 24380  df-log 25053  df-squarenn 39300  df-pell1qr 39301  df-pell14qr 39302  df-pell1234qr 39303  df-pellfund 39304  df-rmx 39361  df-rmy 39362
This theorem is referenced by:  rmxadd  39386  rmyadd  39390
  Copyright terms: Public domain W3C validator