Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Visualization version   GIF version

Theorem rmxyadd 42954
Description: Addition formula for X and Y sequences. See rmxadd 42960 and rmyadd 42964 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
2 zaddcl 12507 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
323adant1 1130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4 rmxyval 42948 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
51, 3, 4syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
6 eluzelz 12737 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
763ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
87zcnd 12573 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
9 zq 12847 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
10 qsqcl 14032 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
117, 9, 103syl 18 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℚ)
12 zssq 12849 . . . . . . . . . . 11 ℤ ⊆ ℚ
13 1z 12497 . . . . . . . . . . 11 1 ∈ ℤ
1412, 13sselii 3926 . . . . . . . . . 10 1 ∈ ℚ
1514a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℚ)
16 qsubcl 12861 . . . . . . . . 9 (((𝐴↑2) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝐴↑2) − 1) ∈ ℚ)
1711, 15, 16syl2anc 584 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℚ)
18 qcn 12856 . . . . . . . 8 (((𝐴↑2) − 1) ∈ ℚ → ((𝐴↑2) − 1) ∈ ℂ)
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2019sqrtcld 15342 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
218, 20addcld 11126 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
22 rmbaserp 42952 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
2322rpne0d 12934 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
24233ad2ant1 1133 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
25 simp2 1137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
26 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
27 expaddz 14008 . . . . 5 ((((𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
2821, 24, 25, 26, 27syl22anc 838 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
29 frmx 42946 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
3130, 1, 25fovcdmd 7513 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0)
3231nn0cnd 12439 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ)
33 frmy 42947 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3433a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
3534, 1, 25fovcdmd 7513 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3635zcnd 12573 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ)
3720, 36mulcld 11127 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)) ∈ ℂ)
3830, 1, 26fovcdmd 7513 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3938nn0cnd 12439 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
4034, 1, 26fovcdmd 7513 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
4140zcnd 12573 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
4220, 41mulcld 11127 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
4332, 37, 39, 42muladdd 11570 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))))
44 rmxyval 42948 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
451, 25, 44syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
46 rmxyval 42948 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
471, 26, 46syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
4845, 47oveq12d 7359 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
4943, 48eqtr3d 2768 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
5020, 41, 20, 36mul4d 11320 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))))
5119msqsqrtd 15345 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) = ((𝐴↑2) − 1))
5241, 36mulcomd 11128 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))
5351, 52oveq12d 7359 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5450, 53eqtrd 2766 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5554oveq2d 7357 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))))
5632, 20, 41mul12d 11317 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
5739, 20, 36mul12d 11317 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))))
5856, 57oveq12d 7359 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
5932, 41mulcld 11127 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℂ)
6039, 36mulcld 11127 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ)
6120, 59, 60adddid 11131 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
6259, 60addcomd 11310 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6339, 36mulcomd 11128 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)))
6463oveq1d 7356 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6562, 64eqtrd 2766 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6665oveq2d 7357 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6758, 61, 663eqtr2d 2772 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6855, 67oveq12d 7359 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
6928, 49, 683eqtr2d 2772 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
705, 69eqtrd 2766 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
71 rmspecsqrtnq 42939 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
72713ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
73 nn0ssq 12850 . . . 4 0 ⊆ ℚ
7430, 1, 3fovcdmd 7513 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℕ0)
7573, 74sselid 3927 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ)
7634, 1, 3fovcdmd 7513 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℤ)
7712, 76sselid 3927 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ)
7873, 31sselid 3927 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℚ)
7973, 38sselid 3927 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
80 qmulcl 12860 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8178, 79, 80syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8212, 35sselid 3927 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℚ)
8312, 40sselid 3927 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
84 qmulcl 12860 . . . . . 6 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
8582, 83, 84syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
86 qmulcl 12860 . . . . 5 ((((𝐴↑2) − 1) ∈ ℚ ∧ ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
8717, 85, 86syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
88 qaddcl 12858 . . . 4 ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
8981, 87, 88syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
90 qmulcl 12860 . . . . 5 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
9182, 79, 90syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
92 qmulcl 12860 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
9378, 83, 92syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
94 qaddcl 12858 . . . 4 ((((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
9591, 93, 94syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
96 qirropth 42941 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ ∧ (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ) ∧ ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ ∧ (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9772, 75, 77, 89, 95, 96syl122anc 1381 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9870, 97mpbid 232 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894   × cxp 5609  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cmin 11339  2c2 12175  0cn0 12376  cz 12463  cuz 12727  cq 12841  cexp 13963  csqrt 15135   Xrm crmx 42933   Yrm crmy 42934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-dvds 16159  df-gcd 16401  df-numer 16641  df-denom 16642  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-squarenn 42874  df-pell1qr 42875  df-pell14qr 42876  df-pell1234qr 42877  df-pellfund 42878  df-rmx 42935  df-rmy 42936
This theorem is referenced by:  rmxadd  42960  rmyadd  42964
  Copyright terms: Public domain W3C validator