Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Visualization version   GIF version

Theorem rmxyadd 42892
Description: Addition formula for X and Y sequences. See rmxadd 42898 and rmyadd 42902 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
2 zaddcl 12630 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
323adant1 1130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4 rmxyval 42886 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
51, 3, 4syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
6 eluzelz 12860 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
763ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
87zcnd 12696 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
9 zq 12968 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
10 qsqcl 14146 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
117, 9, 103syl 18 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℚ)
12 zssq 12970 . . . . . . . . . . 11 ℤ ⊆ ℚ
13 1z 12620 . . . . . . . . . . 11 1 ∈ ℤ
1412, 13sselii 3955 . . . . . . . . . 10 1 ∈ ℚ
1514a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℚ)
16 qsubcl 12982 . . . . . . . . 9 (((𝐴↑2) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝐴↑2) − 1) ∈ ℚ)
1711, 15, 16syl2anc 584 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℚ)
18 qcn 12977 . . . . . . . 8 (((𝐴↑2) − 1) ∈ ℚ → ((𝐴↑2) − 1) ∈ ℂ)
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2019sqrtcld 15454 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
218, 20addcld 11252 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
22 rmbaserp 42890 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
2322rpne0d 13054 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
24233ad2ant1 1133 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
25 simp2 1137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
26 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
27 expaddz 14122 . . . . 5 ((((𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
2821, 24, 25, 26, 27syl22anc 838 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
29 frmx 42884 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
3130, 1, 25fovcdmd 7577 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0)
3231nn0cnd 12562 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ)
33 frmy 42885 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3433a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
3534, 1, 25fovcdmd 7577 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3635zcnd 12696 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ)
3720, 36mulcld 11253 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)) ∈ ℂ)
3830, 1, 26fovcdmd 7577 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3938nn0cnd 12562 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
4034, 1, 26fovcdmd 7577 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
4140zcnd 12696 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
4220, 41mulcld 11253 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
4332, 37, 39, 42muladdd 11693 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))))
44 rmxyval 42886 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
451, 25, 44syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
46 rmxyval 42886 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
471, 26, 46syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
4845, 47oveq12d 7421 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
4943, 48eqtr3d 2772 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
5020, 41, 20, 36mul4d 11445 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))))
5119msqsqrtd 15457 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) = ((𝐴↑2) − 1))
5241, 36mulcomd 11254 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))
5351, 52oveq12d 7421 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5450, 53eqtrd 2770 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5554oveq2d 7419 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))))
5632, 20, 41mul12d 11442 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
5739, 20, 36mul12d 11442 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))))
5856, 57oveq12d 7421 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
5932, 41mulcld 11253 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℂ)
6039, 36mulcld 11253 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ)
6120, 59, 60adddid 11257 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
6259, 60addcomd 11435 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6339, 36mulcomd 11254 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)))
6463oveq1d 7418 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6562, 64eqtrd 2770 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6665oveq2d 7419 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6758, 61, 663eqtr2d 2776 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6855, 67oveq12d 7421 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
6928, 49, 683eqtr2d 2776 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
705, 69eqtrd 2770 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
71 rmspecsqrtnq 42876 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
72713ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
73 nn0ssq 12971 . . . 4 0 ⊆ ℚ
7430, 1, 3fovcdmd 7577 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℕ0)
7573, 74sselid 3956 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ)
7634, 1, 3fovcdmd 7577 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℤ)
7712, 76sselid 3956 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ)
7873, 31sselid 3956 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℚ)
7973, 38sselid 3956 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
80 qmulcl 12981 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8178, 79, 80syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8212, 35sselid 3956 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℚ)
8312, 40sselid 3956 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
84 qmulcl 12981 . . . . . 6 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
8582, 83, 84syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
86 qmulcl 12981 . . . . 5 ((((𝐴↑2) − 1) ∈ ℚ ∧ ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
8717, 85, 86syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
88 qaddcl 12979 . . . 4 ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
8981, 87, 88syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
90 qmulcl 12981 . . . . 5 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
9182, 79, 90syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
92 qmulcl 12981 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
9378, 83, 92syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
94 qaddcl 12979 . . . 4 ((((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
9591, 93, 94syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
96 qirropth 42878 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ ∧ (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ) ∧ ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ ∧ (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9772, 75, 77, 89, 95, 96syl122anc 1381 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9870, 97mpbid 232 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cdif 3923   × cxp 5652  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cmin 11464  2c2 12293  0cn0 12499  cz 12586  cuz 12850  cq 12962  cexp 14077  csqrt 15250   Xrm crmx 42870   Yrm crmy 42871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-dvds 16271  df-gcd 16512  df-numer 16752  df-denom 16753  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-squarenn 42811  df-pell1qr 42812  df-pell14qr 42813  df-pell1234qr 42814  df-pellfund 42815  df-rmx 42872  df-rmy 42873
This theorem is referenced by:  rmxadd  42898  rmyadd  42902
  Copyright terms: Public domain W3C validator