Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Visualization version   GIF version

Theorem rmxyadd 42883
Description: Addition formula for X and Y sequences. See rmxadd 42889 and rmyadd 42893 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
2 zaddcl 12549 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
323adant1 1130 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4 rmxyval 42877 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
51, 3, 4syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)))
6 eluzelz 12779 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
763ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
87zcnd 12615 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ)
9 zq 12889 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
10 qsqcl 14071 . . . . . . . . . 10 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
117, 9, 103syl 18 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℚ)
12 zssq 12891 . . . . . . . . . . 11 ℤ ⊆ ℚ
13 1z 12539 . . . . . . . . . . 11 1 ∈ ℤ
1412, 13sselii 3940 . . . . . . . . . 10 1 ∈ ℚ
1514a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℚ)
16 qsubcl 12903 . . . . . . . . 9 (((𝐴↑2) ∈ ℚ ∧ 1 ∈ ℚ) → ((𝐴↑2) − 1) ∈ ℚ)
1711, 15, 16syl2anc 584 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℚ)
18 qcn 12898 . . . . . . . 8 (((𝐴↑2) − 1) ∈ ℚ → ((𝐴↑2) − 1) ∈ ℂ)
1917, 18syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2019sqrtcld 15382 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
218, 20addcld 11169 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
22 rmbaserp 42881 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
2322rpne0d 12976 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
24233ad2ant1 1133 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
25 simp2 1137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
26 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
27 expaddz 14047 . . . . 5 ((((𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
2821, 24, 25, 26, 27syl22anc 838 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
29 frmx 42875 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
3130, 1, 25fovcdmd 7541 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0)
3231nn0cnd 12481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ)
33 frmy 42876 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3433a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
3534, 1, 25fovcdmd 7541 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3635zcnd 12615 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ)
3720, 36mulcld 11170 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)) ∈ ℂ)
3830, 1, 26fovcdmd 7541 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3938nn0cnd 12481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
4034, 1, 26fovcdmd 7541 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
4140zcnd 12615 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
4220, 41mulcld 11170 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
4332, 37, 39, 42muladdd 11612 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))))
44 rmxyval 42877 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
451, 25, 44syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀))
46 rmxyval 42877 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
471, 26, 46syl2anc 584 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
4845, 47oveq12d 7387 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
4943, 48eqtr3d 2766 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑀) · ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
5020, 41, 20, 36mul4d 11362 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))))
5119msqsqrtd 15385 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) = ((𝐴↑2) − 1))
5241, 36mulcomd 11171 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))
5351, 52oveq12d 7387 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (√‘((𝐴↑2) − 1))) · ((𝐴 Yrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5450, 53eqtrd 2764 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))))
5554oveq2d 7385 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))))
5632, 20, 41mul12d 11359 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
5739, 20, 36mul12d 11359 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))) = ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))))
5856, 57oveq12d 7387 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
5932, 41mulcld 11170 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℂ)
6039, 36mulcld 11170 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ)
6120, 59, 60adddid 11174 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = (((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) + ((√‘((𝐴↑2) − 1)) · ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))))
6259, 60addcomd 11352 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6339, 36mulcomd 11171 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)))
6463oveq1d 7384 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6562, 64eqtrd 2764 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))
6665oveq2d 7385 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6758, 61, 663eqtr2d 2770 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) = ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
6855, 67oveq12d 7387 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀)))) + (((𝐴 Xrm 𝑀) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) + ((𝐴 Xrm 𝑁) · ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑀))))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
6928, 49, 683eqtr2d 2770 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑(𝑀 + 𝑁)) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
705, 69eqtrd 2764 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
71 rmspecsqrtnq 42867 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
72713ad2ant1 1133 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
73 nn0ssq 12892 . . . 4 0 ⊆ ℚ
7430, 1, 3fovcdmd 7541 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℕ0)
7573, 74sselid 3941 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ)
7634, 1, 3fovcdmd 7541 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℤ)
7712, 76sselid 3941 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ)
7873, 31sselid 3941 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℚ)
7973, 38sselid 3941 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
80 qmulcl 12902 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8178, 79, 80syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
8212, 35sselid 3941 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℚ)
8312, 40sselid 3941 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
84 qmulcl 12902 . . . . . 6 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
8582, 83, 84syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
86 qmulcl 12902 . . . . 5 ((((𝐴↑2) − 1) ∈ ℚ ∧ ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
8717, 85, 86syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
88 qaddcl 12900 . . . 4 ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
8981, 87, 88syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ)
90 qmulcl 12902 . . . . 5 (((𝐴 Yrm 𝑀) ∈ ℚ ∧ (𝐴 Xrm 𝑁) ∈ ℚ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
9182, 79, 90syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ)
92 qmulcl 12902 . . . . 5 (((𝐴 Xrm 𝑀) ∈ ℚ ∧ (𝐴 Yrm 𝑁) ∈ ℚ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
9378, 83, 92syl2anc 584 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ)
94 qaddcl 12900 . . . 4 ((((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) ∈ ℚ ∧ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ∈ ℚ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
9591, 93, 94syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)
96 qirropth 42869 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑀 + 𝑁)) ∈ ℚ ∧ (𝐴 Yrm (𝑀 + 𝑁)) ∈ ℚ) ∧ ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∈ ℚ ∧ (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))) ∈ ℚ)) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9772, 75, 77, 89, 95, 96syl122anc 1381 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm (𝑀 + 𝑁)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑀 + 𝑁)))) = ((((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) + ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))) ↔ ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁))))))
9870, 97mpbid 232 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑀 + 𝑁)) = (((𝐴 Xrm 𝑀) · (𝐴 Xrm 𝑁)) + (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑀) · (𝐴 Yrm 𝑁)))) ∧ (𝐴 Yrm (𝑀 + 𝑁)) = (((𝐴 Yrm 𝑀) · (𝐴 Xrm 𝑁)) + ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  0cn0 12418  cz 12505  cuz 12769  cq 12883  cexp 14002  csqrt 15175   Xrm crmx 42861   Yrm crmy 42862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-squarenn 42802  df-pell1qr 42803  df-pell14qr 42804  df-pell1234qr 42805  df-pellfund 42806  df-rmx 42863  df-rmy 42864
This theorem is referenced by:  rmxadd  42889  rmyadd  42893
  Copyright terms: Public domain W3C validator