Proof of Theorem binomrisefac
Step | Hyp | Ref
| Expression |
1 | | negdi 10994 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
2 | 1 | 3adant3 1129 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
3 | 2 | oveq1d 7171 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-(𝐴 + 𝐵) FallFac 𝑁) = ((-𝐴 + -𝐵) FallFac 𝑁)) |
4 | | negcl 10937 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
5 | | negcl 10937 |
. . . . . 6
⊢ (𝐵 ∈ ℂ → -𝐵 ∈
ℂ) |
6 | | id 22 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
7 | | binomfallfac 15456 |
. . . . . 6
⊢ ((-𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
8 | 4, 5, 6, 7 | syl3an 1157 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
9 | 3, 8 | eqtrd 2793 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-(𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
10 | 9 | oveq2d 7172 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· (-(𝐴 + 𝐵) FallFac 𝑁)) = ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
11 | | fzfid 13403 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (0...𝑁) ∈
Fin) |
12 | | neg1cn 11801 |
. . . . . 6
⊢ -1 ∈
ℂ |
13 | | expcl 13510 |
. . . . . 6
⊢ ((-1
∈ ℂ ∧ 𝑁
∈ ℕ0) → (-1↑𝑁) ∈ ℂ) |
14 | 12, 13 | mpan 689 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (-1↑𝑁) ∈
ℂ) |
15 | 14 | 3ad2ant3 1132 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-1↑𝑁) ∈
ℂ) |
16 | | simp3 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) |
17 | | elfzelz 12969 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
18 | | bccl 13745 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
19 | 16, 17, 18 | syl2an 598 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) |
20 | 19 | nn0cnd 12009 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) |
21 | | simpl1 1188 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
22 | 21 | negcld 11035 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → -𝐴 ∈ ℂ) |
23 | 16 | nn0zd 12137 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
24 | | zsubcl 12076 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) |
25 | 23, 17, 24 | syl2an 598 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
26 | | elfzle2 12973 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) |
27 | 26 | adantl 485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≤ 𝑁) |
28 | | simpl3 1190 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
29 | 28 | nn0red 12008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℝ) |
30 | | elfznn0 13062 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
31 | 30 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
32 | 31 | nn0red 12008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
33 | 29, 32 | subge0d 11281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (0 ≤ (𝑁 − 𝑘) ↔ 𝑘 ≤ 𝑁)) |
34 | 27, 33 | mpbird 260 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 0 ≤ (𝑁 − 𝑘)) |
35 | | elnn0z 12046 |
. . . . . . . 8
⊢ ((𝑁 − 𝑘) ∈ ℕ0 ↔ ((𝑁 − 𝑘) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑘))) |
36 | 25, 34, 35 | sylanbrc 586 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
37 | | fallfaccl 15431 |
. . . . . . 7
⊢ ((-𝐴 ∈ ℂ ∧ (𝑁 − 𝑘) ∈ ℕ0) → (-𝐴 FallFac (𝑁 − 𝑘)) ∈ ℂ) |
38 | 22, 36, 37 | syl2anc 587 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-𝐴 FallFac (𝑁 − 𝑘)) ∈ ℂ) |
39 | | simp2 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
40 | 39 | negcld 11035 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ -𝐵 ∈
ℂ) |
41 | | fallfaccl 15431 |
. . . . . . 7
⊢ ((-𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (-𝐵 FallFac 𝑘) ∈
ℂ) |
42 | 40, 30, 41 | syl2an 598 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-𝐵 FallFac 𝑘) ∈ ℂ) |
43 | 38, 42 | mulcld 10712 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)) ∈ ℂ) |
44 | 20, 43 | mulcld 10712 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))) ∈ ℂ) |
45 | 11, 15, 44 | fsummulc2 15200 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
46 | 10, 45 | eqtrd 2793 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· (-(𝐴 + 𝐵) FallFac 𝑁)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
47 | | addcl 10670 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
48 | | risefallfac 15439 |
. . 3
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁))) |
49 | 47, 48 | stoic3 1778 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁))) |
50 | | risefallfac 15439 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑁 − 𝑘) ∈ ℕ0) → (𝐴 RiseFac (𝑁 − 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘)))) |
51 | 21, 36, 50 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝐴 RiseFac (𝑁 − 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘)))) |
52 | | simpl2 1189 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ) |
53 | | risefallfac 15439 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) |
54 | 52, 31, 53 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) |
55 | 51, 54 | oveq12d 7174 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)) = (((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))) |
56 | | expcl 13510 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ (𝑁
− 𝑘) ∈
ℕ0) → (-1↑(𝑁 − 𝑘)) ∈ ℂ) |
57 | 12, 36, 56 | sylancr 590 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑(𝑁 − 𝑘)) ∈ ℂ) |
58 | | expcl 13510 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℂ) |
59 | 12, 30, 58 | sylancr 590 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ) |
60 | 59 | adantl 485 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈
ℂ) |
61 | 57, 38, 60, 42 | mul4d 10903 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) = (((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
62 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → -1 ∈
ℂ) |
63 | 62, 31, 36 | expaddd 13575 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁 − 𝑘) + 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-1↑𝑘))) |
64 | 16 | nn0cnd 12009 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
65 | 30 | nn0cnd 12009 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) |
66 | | npcan 10946 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 − 𝑘) + 𝑘) = 𝑁) |
67 | 64, 65, 66 | syl2an 598 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) + 𝑘) = 𝑁) |
68 | 67 | oveq2d 7172 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁 − 𝑘) + 𝑘)) = (-1↑𝑁)) |
69 | 63, 68 | eqtr3d 2795 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (-1↑𝑁)) |
70 | 69 | oveq1d 7171 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
71 | 55, 61, 70 | 3eqtrd 2797 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
72 | 71 | oveq2d 7172 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
73 | 15 | adantr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑁) ∈
ℂ) |
74 | 20, 73, 43 | mul12d 10900 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
75 | 72, 74 | eqtrd 2793 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
76 | 75 | sumeq2dv 15121 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
77 | 46, 49, 76 | 3eqtr4d 2803 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)))) |