MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomrisefac Structured version   Visualization version   GIF version

Theorem binomrisefac 16063
Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.)
Assertion
Ref Expression
binomrisefac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomrisefac
StepHypRef Expression
1 negdi 11545 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
213adant3 1132 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
32oveq1d 7425 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = ((-𝐴 + -𝐵) FallFac 𝑁))
4 negcl 11487 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5 negcl 11487 . . . . . 6 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
6 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
7 binomfallfac 16062 . . . . . 6 ((-𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
84, 5, 6, 7syl3an 1160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
93, 8eqtrd 2771 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
109oveq2d 7426 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
11 fzfid 13996 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin)
12 neg1cn 12359 . . . . . 6 -1 ∈ ℂ
13 expcl 14102 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
1412, 13mpan 690 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
15143ad2ant3 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
16 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
17 elfzelz 13546 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
18 bccl 14345 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
1916, 17, 18syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2019nn0cnd 12569 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
21 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2221negcld 11586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -𝐴 ∈ ℂ)
2316nn0zd 12619 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
24 zsubcl 12639 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
2523, 17, 24syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
26 elfzle2 13550 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
2726adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
28 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2928nn0red 12568 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
30 elfznn0 13642 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3130adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
3231nn0red 12568 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ)
3329, 32subge0d 11832 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (0 ≤ (𝑁𝑘) ↔ 𝑘𝑁))
3427, 33mpbird 257 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ≤ (𝑁𝑘))
35 elnn0z 12606 . . . . . . . 8 ((𝑁𝑘) ∈ ℕ0 ↔ ((𝑁𝑘) ∈ ℤ ∧ 0 ≤ (𝑁𝑘)))
3625, 34, 35sylanbrc 583 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
37 fallfaccl 16037 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
3822, 36, 37syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
39 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4039negcld 11586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝐵 ∈ ℂ)
41 fallfaccl 16037 . . . . . . 7 ((-𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4240, 30, 41syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4338, 42mulcld 11260 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)) ∈ ℂ)
4420, 43mulcld 11260 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) ∈ ℂ)
4511, 15, 44fsummulc2 15805 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
4610, 45eqtrd 2771 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
47 addcl 11216 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
48 risefallfac 16045 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
4947, 48stoic3 1776 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
50 risefallfac 16045 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
5121, 36, 50syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
52 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
53 risefallfac 16045 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5452, 31, 53syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5551, 54oveq12d 7428 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))))
56 expcl 14102 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-1↑(𝑁𝑘)) ∈ ℂ)
5712, 36, 56sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑(𝑁𝑘)) ∈ ℂ)
58 expcl 14102 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5912, 30, 58sylancr 587 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ)
6059adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
6157, 38, 60, 42mul4d 11452 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) = (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
6212a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -1 ∈ ℂ)
6362, 31, 36expaddd 14171 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = ((-1↑(𝑁𝑘)) · (-1↑𝑘)))
6416nn0cnd 12569 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
6530nn0cnd 12569 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
66 npcan 11496 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) + 𝑘) = 𝑁)
6764, 65, 66syl2an 596 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 𝑘) = 𝑁)
6867oveq2d 7426 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = (-1↑𝑁))
6963, 68eqtr3d 2773 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑁))
7069oveq1d 7425 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7155, 61, 703eqtrd 2775 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7271oveq2d 7426 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7315adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑁) ∈ ℂ)
7420, 73, 43mul12d 11449 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7572, 74eqtrd 2771 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7675sumeq2dv 15723 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7746, 49, 763eqtr4d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471  -cneg 11472  0cn0 12506  cz 12593  ...cfz 13529  cexp 14084  Ccbc 14325  Σcsu 15707   FallFac cfallfac 16025   RiseFac crisefac 16026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-prod 15925  df-risefac 16027  df-fallfac 16028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator