MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomrisefac Structured version   Visualization version   GIF version

Theorem binomrisefac 16078
Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.)
Assertion
Ref Expression
binomrisefac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomrisefac
StepHypRef Expression
1 negdi 11566 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
213adant3 1133 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
32oveq1d 7446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = ((-𝐴 + -𝐵) FallFac 𝑁))
4 negcl 11508 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5 negcl 11508 . . . . . 6 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
6 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
7 binomfallfac 16077 . . . . . 6 ((-𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
84, 5, 6, 7syl3an 1161 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
93, 8eqtrd 2777 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
109oveq2d 7447 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
11 fzfid 14014 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin)
12 neg1cn 12380 . . . . . 6 -1 ∈ ℂ
13 expcl 14120 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
1412, 13mpan 690 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
15143ad2ant3 1136 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
16 simp3 1139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
17 elfzelz 13564 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
18 bccl 14361 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
1916, 17, 18syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2019nn0cnd 12589 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
21 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2221negcld 11607 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -𝐴 ∈ ℂ)
2316nn0zd 12639 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
24 zsubcl 12659 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
2523, 17, 24syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
26 elfzle2 13568 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
2726adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
28 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2928nn0red 12588 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
30 elfznn0 13660 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3130adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
3231nn0red 12588 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ)
3329, 32subge0d 11853 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (0 ≤ (𝑁𝑘) ↔ 𝑘𝑁))
3427, 33mpbird 257 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ≤ (𝑁𝑘))
35 elnn0z 12626 . . . . . . . 8 ((𝑁𝑘) ∈ ℕ0 ↔ ((𝑁𝑘) ∈ ℤ ∧ 0 ≤ (𝑁𝑘)))
3625, 34, 35sylanbrc 583 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
37 fallfaccl 16052 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
3822, 36, 37syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
39 simp2 1138 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4039negcld 11607 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝐵 ∈ ℂ)
41 fallfaccl 16052 . . . . . . 7 ((-𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4240, 30, 41syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4338, 42mulcld 11281 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)) ∈ ℂ)
4420, 43mulcld 11281 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) ∈ ℂ)
4511, 15, 44fsummulc2 15820 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
4610, 45eqtrd 2777 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
47 addcl 11237 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
48 risefallfac 16060 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
4947, 48stoic3 1776 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
50 risefallfac 16060 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
5121, 36, 50syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
52 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
53 risefallfac 16060 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5452, 31, 53syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5551, 54oveq12d 7449 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))))
56 expcl 14120 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-1↑(𝑁𝑘)) ∈ ℂ)
5712, 36, 56sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑(𝑁𝑘)) ∈ ℂ)
58 expcl 14120 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5912, 30, 58sylancr 587 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ)
6059adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
6157, 38, 60, 42mul4d 11473 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) = (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
6212a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -1 ∈ ℂ)
6362, 31, 36expaddd 14188 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = ((-1↑(𝑁𝑘)) · (-1↑𝑘)))
6416nn0cnd 12589 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
6530nn0cnd 12589 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
66 npcan 11517 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) + 𝑘) = 𝑁)
6764, 65, 66syl2an 596 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 𝑘) = 𝑁)
6867oveq2d 7447 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = (-1↑𝑁))
6963, 68eqtr3d 2779 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑁))
7069oveq1d 7446 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7155, 61, 703eqtrd 2781 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7271oveq2d 7447 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7315adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑁) ∈ ℂ)
7420, 73, 43mul12d 11470 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7572, 74eqtrd 2777 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7675sumeq2dv 15738 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7746, 49, 763eqtr4d 2787 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493  0cn0 12526  cz 12613  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722   FallFac cfallfac 16040   RiseFac crisefac 16041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-prod 15940  df-risefac 16042  df-fallfac 16043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator