Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomrisefac Structured version   Visualization version   GIF version

Theorem binomrisefac 15457
 Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.)
Assertion
Ref Expression
binomrisefac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binomrisefac
StepHypRef Expression
1 negdi 10994 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
213adant3 1129 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
32oveq1d 7171 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = ((-𝐴 + -𝐵) FallFac 𝑁))
4 negcl 10937 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5 negcl 10937 . . . . . 6 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
6 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
7 binomfallfac 15456 . . . . . 6 ((-𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
84, 5, 6, 7syl3an 1157 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
93, 8eqtrd 2793 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
109oveq2d 7172 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
11 fzfid 13403 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin)
12 neg1cn 11801 . . . . . 6 -1 ∈ ℂ
13 expcl 13510 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
1412, 13mpan 689 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
15143ad2ant3 1132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
16 simp3 1135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
17 elfzelz 12969 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
18 bccl 13745 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
1916, 17, 18syl2an 598 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2019nn0cnd 12009 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
21 simpl1 1188 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2221negcld 11035 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -𝐴 ∈ ℂ)
2316nn0zd 12137 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
24 zsubcl 12076 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
2523, 17, 24syl2an 598 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
26 elfzle2 12973 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
2726adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
28 simpl3 1190 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2928nn0red 12008 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
30 elfznn0 13062 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3130adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
3231nn0red 12008 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ)
3329, 32subge0d 11281 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (0 ≤ (𝑁𝑘) ↔ 𝑘𝑁))
3427, 33mpbird 260 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ≤ (𝑁𝑘))
35 elnn0z 12046 . . . . . . . 8 ((𝑁𝑘) ∈ ℕ0 ↔ ((𝑁𝑘) ∈ ℤ ∧ 0 ≤ (𝑁𝑘)))
3625, 34, 35sylanbrc 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
37 fallfaccl 15431 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
3822, 36, 37syl2anc 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
39 simp2 1134 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4039negcld 11035 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝐵 ∈ ℂ)
41 fallfaccl 15431 . . . . . . 7 ((-𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4240, 30, 41syl2an 598 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-𝐵 FallFac 𝑘) ∈ ℂ)
4338, 42mulcld 10712 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)) ∈ ℂ)
4420, 43mulcld 10712 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) ∈ ℂ)
4511, 15, 44fsummulc2 15200 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
4610, 45eqtrd 2793 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
47 addcl 10670 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
48 risefallfac 15439 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
4947, 48stoic3 1778 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁)))
50 risefallfac 15439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
5121, 36, 50syl2anc 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 RiseFac (𝑁𝑘)) = ((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))))
52 simpl2 1189 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
53 risefallfac 15439 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5452, 31, 53syl2anc 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))
5551, 54oveq12d 7174 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))))
56 expcl 13510 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (-1↑(𝑁𝑘)) ∈ ℂ)
5712, 36, 56sylancr 590 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑(𝑁𝑘)) ∈ ℂ)
58 expcl 13510 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5912, 30, 58sylancr 590 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ)
6059adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
6157, 38, 60, 42mul4d 10903 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-𝐴 FallFac (𝑁𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) = (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
6212a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → -1 ∈ ℂ)
6362, 31, 36expaddd 13575 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = ((-1↑(𝑁𝑘)) · (-1↑𝑘)))
6416nn0cnd 12009 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
6530nn0cnd 12009 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
66 npcan 10946 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) + 𝑘) = 𝑁)
6764, 65, 66syl2an 598 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 𝑘) = 𝑁)
6867oveq2d 7172 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁𝑘) + 𝑘)) = (-1↑𝑁))
6963, 68eqtr3d 2795 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑁))
7069oveq1d 7171 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7155, 61, 703eqtrd 2797 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘)) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘))))
7271oveq2d 7172 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7315adantr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑁) ∈ ℂ)
7420, 73, 43mul12d 10900 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7572, 74eqtrd 2793 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7675sumeq2dv 15121 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁𝑘)) · (-𝐵 FallFac 𝑘)))))
7746, 49, 763eqtr4d 2803 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁𝑘)) · (𝐵 RiseFac 𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   class class class wbr 5036  (class class class)co 7156  ℂcc 10586  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593   ≤ cle 10727   − cmin 10921  -cneg 10922  ℕ0cn0 11947  ℤcz 12033  ...cfz 12952  ↑cexp 13492  Ccbc 13725  Σcsu 15103   FallFac cfallfac 15419   RiseFac crisefac 15420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-fac 13697  df-bc 13726  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-prod 15321  df-risefac 15421  df-fallfac 15422 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator