Proof of Theorem binomrisefac
| Step | Hyp | Ref
| Expression |
| 1 | | negdi 11545 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
| 2 | 1 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
| 3 | 2 | oveq1d 7425 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-(𝐴 + 𝐵) FallFac 𝑁) = ((-𝐴 + -𝐵) FallFac 𝑁)) |
| 4 | | negcl 11487 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
| 5 | | negcl 11487 |
. . . . . 6
⊢ (𝐵 ∈ ℂ → -𝐵 ∈
ℂ) |
| 6 | | id 22 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
| 7 | | binomfallfac 16062 |
. . . . . 6
⊢ ((-𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 8 | 4, 5, 6, 7 | syl3an 1160 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-𝐴 + -𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 9 | 3, 8 | eqtrd 2771 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-(𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 10 | 9 | oveq2d 7426 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· (-(𝐴 + 𝐵) FallFac 𝑁)) = ((-1↑𝑁) · Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 11 | | fzfid 13996 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (0...𝑁) ∈
Fin) |
| 12 | | neg1cn 12359 |
. . . . . 6
⊢ -1 ∈
ℂ |
| 13 | | expcl 14102 |
. . . . . 6
⊢ ((-1
∈ ℂ ∧ 𝑁
∈ ℕ0) → (-1↑𝑁) ∈ ℂ) |
| 14 | 12, 13 | mpan 690 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (-1↑𝑁) ∈
ℂ) |
| 15 | 14 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (-1↑𝑁) ∈
ℂ) |
| 16 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) |
| 17 | | elfzelz 13546 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
| 18 | | bccl 14345 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 19 | 16, 17, 18 | syl2an 596 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) |
| 20 | 19 | nn0cnd 12569 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) |
| 21 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 22 | 21 | negcld 11586 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → -𝐴 ∈ ℂ) |
| 23 | 16 | nn0zd 12619 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
| 24 | | zsubcl 12639 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) |
| 25 | 23, 17, 24 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
| 26 | | elfzle2 13550 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) |
| 27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≤ 𝑁) |
| 28 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
| 29 | 28 | nn0red 12568 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℝ) |
| 30 | | elfznn0 13642 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 32 | 31 | nn0red 12568 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
| 33 | 29, 32 | subge0d 11832 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (0 ≤ (𝑁 − 𝑘) ↔ 𝑘 ≤ 𝑁)) |
| 34 | 27, 33 | mpbird 257 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 0 ≤ (𝑁 − 𝑘)) |
| 35 | | elnn0z 12606 |
. . . . . . . 8
⊢ ((𝑁 − 𝑘) ∈ ℕ0 ↔ ((𝑁 − 𝑘) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑘))) |
| 36 | 25, 34, 35 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
| 37 | | fallfaccl 16037 |
. . . . . . 7
⊢ ((-𝐴 ∈ ℂ ∧ (𝑁 − 𝑘) ∈ ℕ0) → (-𝐴 FallFac (𝑁 − 𝑘)) ∈ ℂ) |
| 38 | 22, 36, 37 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-𝐴 FallFac (𝑁 − 𝑘)) ∈ ℂ) |
| 39 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
| 40 | 39 | negcld 11586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ -𝐵 ∈
ℂ) |
| 41 | | fallfaccl 16037 |
. . . . . . 7
⊢ ((-𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (-𝐵 FallFac 𝑘) ∈
ℂ) |
| 42 | 40, 30, 41 | syl2an 596 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-𝐵 FallFac 𝑘) ∈ ℂ) |
| 43 | 38, 42 | mulcld 11260 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)) ∈ ℂ) |
| 44 | 20, 43 | mulcld 11260 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))) ∈ ℂ) |
| 45 | 11, 15, 44 | fsummulc2 15805 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 46 | 10, 45 | eqtrd 2771 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((-1↑𝑁)
· (-(𝐴 + 𝐵) FallFac 𝑁)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 47 | | addcl 11216 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| 48 | | risefallfac 16045 |
. . 3
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁))) |
| 49 | 47, 48 | stoic3 1776 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵) RiseFac 𝑁) = ((-1↑𝑁) · (-(𝐴 + 𝐵) FallFac 𝑁))) |
| 50 | | risefallfac 16045 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑁 − 𝑘) ∈ ℕ0) → (𝐴 RiseFac (𝑁 − 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘)))) |
| 51 | 21, 36, 50 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝐴 RiseFac (𝑁 − 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘)))) |
| 52 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ) |
| 53 | | risefallfac 16045 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) |
| 54 | 52, 31, 53 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝐵 RiseFac 𝑘) = ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) |
| 55 | 51, 54 | oveq12d 7428 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)) = (((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘)))) |
| 56 | | expcl 14102 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ (𝑁
− 𝑘) ∈
ℕ0) → (-1↑(𝑁 − 𝑘)) ∈ ℂ) |
| 57 | 12, 36, 56 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑(𝑁 − 𝑘)) ∈ ℂ) |
| 58 | | expcl 14102 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℂ) |
| 59 | 12, 30, 58 | sylancr 587 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ) |
| 60 | 59 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈
ℂ) |
| 61 | 57, 38, 60, 42 | mul4d 11452 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁 − 𝑘)) · (-𝐴 FallFac (𝑁 − 𝑘))) · ((-1↑𝑘) · (-𝐵 FallFac 𝑘))) = (((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 62 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → -1 ∈
ℂ) |
| 63 | 62, 31, 36 | expaddd 14171 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁 − 𝑘) + 𝑘)) = ((-1↑(𝑁 − 𝑘)) · (-1↑𝑘))) |
| 64 | 16 | nn0cnd 12569 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
| 65 | 30 | nn0cnd 12569 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) |
| 66 | | npcan 11496 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 − 𝑘) + 𝑘) = 𝑁) |
| 67 | 64, 65, 66 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) + 𝑘) = 𝑁) |
| 68 | 67 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑((𝑁 − 𝑘) + 𝑘)) = (-1↑𝑁)) |
| 69 | 63, 68 | eqtr3d 2773 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (-1↑𝑁)) |
| 70 | 69 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (((-1↑(𝑁 − 𝑘)) · (-1↑𝑘)) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 71 | 55, 61, 70 | 3eqtrd 2775 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)) = ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) |
| 72 | 71 | oveq2d 7426 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 73 | 15 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑁) ∈
ℂ) |
| 74 | 20, 73, 43 | mul12d 11449 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑𝑁) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘)))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 75 | 72, 74 | eqtrd 2771 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = ((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 76 | 75 | sumeq2dv 15723 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑁) · ((𝑁C𝑘) · ((-𝐴 FallFac (𝑁 − 𝑘)) · (-𝐵 FallFac 𝑘))))) |
| 77 | 46, 49, 76 | 3eqtr4d 2781 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)))) |