| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6886 |
. . . 4
⊢ (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿‘𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚)))) |
| 2 | | oveq2 7418 |
. . . . 5
⊢ (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) / 𝑛) = ((μ‘𝑑) / (𝑑 · 𝑚))) |
| 3 | | fvoveq1 7433 |
. . . . 5
⊢ (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑))) |
| 4 | 2, 3 | oveq12d 7428 |
. . . 4
⊢ (𝑛 = (𝑑 · 𝑚) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) |
| 5 | 1, 4 | oveq12d 7428 |
. . 3
⊢ (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 6 | | dchrvmasum.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 7 | 6 | rpred 13056 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | | rpvmasum.g |
. . . . . 6
⊢ 𝐺 = (DChr‘𝑁) |
| 9 | | rpvmasum.z |
. . . . . 6
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 10 | | rpvmasum.d |
. . . . . 6
⊢ 𝐷 = (Base‘𝐺) |
| 11 | | rpvmasum.l |
. . . . . 6
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 12 | | dchrisum.b |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) |
| 14 | | elfzelz 13546 |
. . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℤ) |
| 15 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ) |
| 16 | 8, 9, 10, 11, 13, 15 | dchrzrhcl 27213 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 17 | 16 | adantrr 717 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 18 | | elrabi 3671 |
. . . . . . . . . 10
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} → 𝑑 ∈ ℕ) |
| 19 | 18 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑑 ∈ ℕ) |
| 20 | | mucl 27108 |
. . . . . . . . 9
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℤ) |
| 21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℤ) |
| 22 | 21 | zred 12702 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℝ) |
| 23 | | elfznn 13575 |
. . . . . . . 8
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
| 24 | 23 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑛 ∈ ℕ) |
| 25 | 22, 24 | nndivred 12299 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℝ) |
| 26 | 25 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℂ) |
| 27 | 24 | nnrpd 13054 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑛 ∈ ℝ+) |
| 28 | 19 | nnrpd 13054 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑑 ∈ ℝ+) |
| 29 | 27, 28 | rpdivcld 13073 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (𝑛 / 𝑑) ∈
ℝ+) |
| 30 | 29 | relogcld 26589 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℝ) |
| 31 | 30 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
| 32 | 26, 31 | mulcld 11260 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ) |
| 33 | 17, 32 | mulcld 11260 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) ∈ ℂ) |
| 34 | 5, 7, 33 | dvdsflsumcom 27155 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 35 | | vmaf 27086 |
. . . . . . . . . . . . 13
⊢
Λ:ℕ⟶ℝ |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 →
Λ:ℕ⟶ℝ) |
| 37 | | ax-resscn 11191 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
| 38 | | fss 6727 |
. . . . . . . . . . . 12
⊢
((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) →
Λ:ℕ⟶ℂ) |
| 39 | 36, 37, 38 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 →
Λ:ℕ⟶ℂ) |
| 40 | | vmasum 27184 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ →
Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖) = (log‘𝑚)) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖) = (log‘𝑚)) |
| 42 | 41 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘𝑚) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖)) |
| 43 | 42 | mpteq2dva 5219 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖))) |
| 44 | 39, 43 | muinv 27160 |
. . . . . . . . . 10
⊢ (𝜑 → Λ = (𝑛 ∈ ℕ ↦
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))) |
| 45 | 44 | fveq1d 6883 |
. . . . . . . . 9
⊢ (𝜑 → (Λ‘𝑛) = ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛)) |
| 46 | | sumex 15709 |
. . . . . . . . . 10
⊢
Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V |
| 47 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) |
| 48 | 47 | fvmpt2 7002 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) |
| 49 | 23, 46, 48 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ ((𝑛 ∈ ℕ
↦ Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) |
| 50 | 45, 49 | sylan9eq 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) |
| 51 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑑 → (𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛)) |
| 52 | 51 | elrab 3676 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) |
| 53 | 52 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} → 𝑑 ∥ 𝑛) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑑 ∥ 𝑛) |
| 55 | 23 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) |
| 56 | | nndivdvds 16286 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑑 ∥ 𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ)) |
| 57 | 55, 18, 56 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (𝑑 ∥ 𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ)) |
| 58 | 54, 57 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (𝑛 / 𝑑) ∈ ℕ) |
| 59 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 / 𝑑) → (log‘𝑚) = (log‘(𝑛 / 𝑑))) |
| 60 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ ↦
(log‘𝑚)) = (𝑚 ∈ ℕ ↦
(log‘𝑚)) |
| 61 | | fvex 6894 |
. . . . . . . . . . . 12
⊢
(log‘(𝑛 /
𝑑)) ∈
V |
| 62 | 59, 60, 61 | fvmpt 6991 |
. . . . . . . . . . 11
⊢ ((𝑛 / 𝑑) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑))) |
| 63 | 58, 62 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑))) |
| 64 | 63 | oveq2d 7426 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) |
| 65 | 64 | sumeq2dv 15723 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) |
| 66 | 50, 65 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) |
| 67 | 66 | oveq1d 7425 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛)) |
| 68 | | fzfid 13996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin) |
| 69 | | dvdsssfz1 16342 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) |
| 70 | 55, 69 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) |
| 71 | 68, 70 | ssfid 9278 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ∈ Fin) |
| 72 | 55 | nncnd 12261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ) |
| 73 | 21 | zcnd 12703 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℂ) |
| 74 | 73 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℂ) |
| 75 | 31 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
| 76 | 74, 75 | mulcld 11260 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) ∈ ℂ) |
| 77 | 55 | nnne0d 12295 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0) |
| 78 | 71, 72, 76, 77 | fsumdivc 15807 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛)) |
| 79 | 18 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑑 ∈ ℕ) |
| 80 | 79, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℤ) |
| 81 | 80 | zcnd 12703 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℂ) |
| 82 | 72 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑛 ∈ ℂ) |
| 83 | 77 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑛 ≠ 0) |
| 84 | 81, 75, 82, 83 | div23d 12059 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) |
| 85 | 84 | sumeq2dv 15723 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) |
| 86 | 67, 78, 85 | 3eqtrd 2775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) |
| 87 | 86 | oveq2d 7426 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = ((𝑋‘(𝐿‘𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) |
| 88 | 32 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ) |
| 89 | 71, 16, 88 | fsummulc2 15805 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) |
| 90 | 87, 89 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) |
| 91 | 90 | sumeq2dv 15723 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) |
| 92 | | fzfid 13996 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin) |
| 93 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) |
| 94 | | elfzelz 13546 |
. . . . . . . 8
⊢ (𝑑 ∈
(1...(⌊‘𝐴))
→ 𝑑 ∈
ℤ) |
| 95 | 94 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ) |
| 96 | 8, 9, 10, 11, 93, 95 | dchrzrhcl 27213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑑)) ∈ ℂ) |
| 97 | | fznnfl 13884 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝐴))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝐴))) |
| 98 | 7, 97 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴))) |
| 99 | 98 | simprbda 498 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ) |
| 100 | 99, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ) |
| 101 | 100 | zred 12702 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ) |
| 102 | 101, 99 | nndivred 12299 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ) |
| 103 | 102 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ) |
| 104 | 96, 103 | mulcld 11260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ) |
| 105 | 12 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋 ∈ 𝐷) |
| 106 | | elfzelz 13546 |
. . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℤ) |
| 107 | 106 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ) |
| 108 | 8, 9, 10, 11, 105, 107 | dchrzrhcl 27213 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 109 | | elfznn 13575 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℕ) |
| 110 | 109 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ) |
| 111 | 110 | nnrpd 13054 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+) |
| 112 | 111 | relogcld 26589 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ) |
| 113 | 112, 110 | nndivred 12299 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ) |
| 114 | 113 | recnd 11268 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ) |
| 115 | 108, 114 | mulcld 11260 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ) |
| 116 | 92, 104, 115 | fsummulc2 15805 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |
| 117 | 96 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘𝑑)) ∈ ℂ) |
| 118 | 103 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) / 𝑑) ∈ ℂ) |
| 119 | 117, 118,
108, 114 | mul4d 11452 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = (((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))) |
| 120 | 94 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ) |
| 121 | 8, 9, 10, 11, 105, 120, 107 | dchrzrhmul 27214 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚)))) |
| 122 | 101 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ) |
| 123 | 122 | recnd 11268 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ) |
| 124 | 112 | recnd 11268 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ) |
| 125 | 99 | nnrpd 13054 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+) |
| 127 | 126, 111 | rpmulcld 13072 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 · 𝑚) ∈
ℝ+) |
| 128 | 127 | rpcnne0d 13065 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) |
| 129 | | div23 11920 |
. . . . . . . . 9
⊢
(((μ‘𝑑)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) |
| 130 | 123, 124,
128, 129 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) |
| 131 | 126 | rpcnne0d 13065 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) |
| 132 | 111 | rpcnne0d 13065 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) |
| 133 | | divmuldiv 11946 |
. . . . . . . . 9
⊢
((((μ‘𝑑)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚))) |
| 134 | 123, 124,
131, 132, 133 | syl22anc 838 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚))) |
| 135 | 110 | nncnd 12261 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ) |
| 136 | 126 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ) |
| 137 | 126 | rpne0d 13061 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0) |
| 138 | 135, 136,
137 | divcan3d 12027 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚) |
| 139 | 138 | fveq2d 6885 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚)) |
| 140 | 139 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) |
| 141 | 130, 134,
140 | 3eqtr4rd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))) |
| 142 | 121, 141 | oveq12d 7428 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) = (((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))) |
| 143 | 119, 142 | eqtr4d 2774 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 144 | 143 | sumeq2dv 15723 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 145 | 116, 144 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 146 | 145 | sumeq2dv 15723 |
. 2
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) |
| 147 | 34, 91, 146 | 3eqtr4d 2781 |
1
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |