MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem1 27554
Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
dchrvmasumlem1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem1
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6912 . . . 4 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
2 oveq2 7439 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) / 𝑛) = ((μ‘𝑑) / (𝑑 · 𝑚)))
3 fvoveq1 7454 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
42, 3oveq12d 7449 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))
51, 4oveq12d 7449 . . 3 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
6 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
76rpred 13075 . . 3 (𝜑𝐴 ∈ ℝ)
8 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
9 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
10 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
11 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
12 dchrisum.b . . . . . . 7 (𝜑𝑋𝐷)
1312adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
14 elfzelz 13561 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
1514adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
168, 9, 10, 11, 13, 15dchrzrhcl 27304 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
1716adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
18 elrabi 3690 . . . . . . . . . 10 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
1918ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
20 mucl 27199 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
2221zred 12720 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℝ)
23 elfznn 13590 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2423ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℕ)
2522, 24nndivred 12318 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℝ)
2625recnd 11287 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℂ)
2724nnrpd 13073 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℝ+)
2819nnrpd 13073 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℝ+)
2927, 28rpdivcld 13092 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
3029relogcld 26680 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℝ)
3130recnd 11287 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
3226, 31mulcld 11279 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
3317, 32mulcld 11279 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) ∈ ℂ)
345, 7, 33dvdsflsumcom 27246 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
35 vmaf 27177 . . . . . . . . . . . . 13 Λ:ℕ⟶ℝ
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → Λ:ℕ⟶ℝ)
37 ax-resscn 11210 . . . . . . . . . . . 12 ℝ ⊆ ℂ
38 fss 6753 . . . . . . . . . . . 12 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
3936, 37, 38sylancl 586 . . . . . . . . . . 11 (𝜑 → Λ:ℕ⟶ℂ)
40 vmasum 27275 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4140adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4241eqcomd 2741 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (log‘𝑚) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖))
4342mpteq2dva 5248 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖)))
4439, 43muinv 27251 . . . . . . . . . 10 (𝜑 → Λ = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))))
4544fveq1d 6909 . . . . . . . . 9 (𝜑 → (Λ‘𝑛) = ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛))
46 sumex 15721 . . . . . . . . . 10 Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V
47 eqid 2735 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
4847fvmpt2 7027 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
4923, 46, 48sylancl 586 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5045, 49sylan9eq 2795 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
51 breq1 5151 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
5251elrab 3695 . . . . . . . . . . . . . 14 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
5352simprbi 496 . . . . . . . . . . . . 13 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑𝑛)
5453adantl 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑𝑛)
5523adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
56 nndivdvds 16296 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
5755, 18, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
5854, 57mpbid 232 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
59 fveq2 6907 . . . . . . . . . . . 12 (𝑚 = (𝑛 / 𝑑) → (log‘𝑚) = (log‘(𝑛 / 𝑑)))
60 eqid 2735 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ (log‘𝑚))
61 fvex 6920 . . . . . . . . . . . 12 (log‘(𝑛 / 𝑑)) ∈ V
6259, 60, 61fvmpt 7016 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6358, 62syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6463oveq2d 7447 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6564sumeq2dv 15735 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6650, 65eqtrd 2775 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6766oveq1d 7446 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
68 fzfid 14011 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
69 dvdsssfz1 16352 . . . . . . . . 9 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
7055, 69syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
7168, 70ssfid 9299 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
7255nncnd 12280 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
7321zcnd 12721 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
7473anassrs 467 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
7531anassrs 467 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
7674, 75mulcld 11279 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
7755nnne0d 12314 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
7871, 72, 76, 77fsumdivc 15819 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
7918adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑 ∈ ℕ)
8079, 20syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℤ)
8180zcnd 12721 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
8272adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ∈ ℂ)
8377adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ≠ 0)
8481, 75, 82, 83div23d 12078 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8584sumeq2dv 15735 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8667, 78, 853eqtrd 2779 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8786oveq2d 7447 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
8832anassrs 467 . . . . 5 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
8971, 16, 88fsummulc2 15817 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9087, 89eqtrd 2775 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9190sumeq2dv 15735 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
92 fzfid 14011 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
9312adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
94 elfzelz 13561 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
9594adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
968, 9, 10, 11, 93, 95dchrzrhcl 27304 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
97 fznnfl 13899 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
987, 97syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
9998simprbda 498 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
10099, 20syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
101100zred 12720 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
102101, 99nndivred 12318 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
103102recnd 11287 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
10496, 103mulcld 11279 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
10512ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
106 elfzelz 13561 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
107106adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
1088, 9, 10, 11, 105, 107dchrzrhcl 27304 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
109 elfznn 13590 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
110109adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
111110nnrpd 13073 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
112111relogcld 26680 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
113112, 110nndivred 12318 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
114113recnd 11287 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
115108, 114mulcld 11279 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
11692, 104, 115fsummulc2 15817 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
11796adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
118103adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
119117, 118, 108, 114mul4d 11471 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
12094ad2antlr 727 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
1218, 9, 10, 11, 105, 120, 107dchrzrhmul 27305 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
122101adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
123122recnd 11287 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
124112recnd 11287 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
12599nnrpd 13073 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
126125adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
127126, 111rpmulcld 13091 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 · 𝑚) ∈ ℝ+)
128127rpcnne0d 13084 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0))
129 div23 11939 . . . . . . . . 9 (((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
130123, 124, 128, 129syl3anc 1370 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
131126rpcnne0d 13084 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
132111rpcnne0d 13084 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
133 divmuldiv 11965 . . . . . . . . 9 ((((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
134123, 124, 131, 132, 133syl22anc 839 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
135110nncnd 12280 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
136126rpcnd 13077 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
137126rpne0d 13080 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
138135, 136, 137divcan3d 12046 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
139138fveq2d 6911 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
140139oveq2d 7447 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
141130, 134, 1403eqtr4rd 2786 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))
142121, 141oveq12d 7449 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
143119, 142eqtr4d 2778 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
144143sumeq2dv 15735 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
145116, 144eqtrd 2775 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
146145sumeq2dv 15735 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
14734, 91, 1463eqtr4d 2785 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  wss 3963   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  cle 11294   / cdiv 11918  cn 12264  cz 12611  +crp 13032  ...cfz 13544  cfl 13827  Σcsu 15719  cdvds 16287  Basecbs 17245  0gc0g 17486  ℤRHomczrh 21528  ℤ/nczn 21531  logclog 26611  Λcvma 27150  μcmu 27153  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-qus 17556  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-vma 27156  df-mu 27159  df-dchr 27292
This theorem is referenced by:  dchrvmasum2if  27556
  Copyright terms: Public domain W3C validator