| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2fveq3 6911 | . . . 4
⊢ (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿‘𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚)))) | 
| 2 |  | oveq2 7439 | . . . . 5
⊢ (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) / 𝑛) = ((μ‘𝑑) / (𝑑 · 𝑚))) | 
| 3 |  | fvoveq1 7454 | . . . . 5
⊢ (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑))) | 
| 4 | 2, 3 | oveq12d 7449 | . . . 4
⊢ (𝑛 = (𝑑 · 𝑚) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) | 
| 5 | 1, 4 | oveq12d 7449 | . . 3
⊢ (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 6 |  | dchrvmasum.a | . . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 7 | 6 | rpred 13077 | . . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 8 |  | rpvmasum.g | . . . . . 6
⊢ 𝐺 = (DChr‘𝑁) | 
| 9 |  | rpvmasum.z | . . . . . 6
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) | 
| 10 |  | rpvmasum.d | . . . . . 6
⊢ 𝐷 = (Base‘𝐺) | 
| 11 |  | rpvmasum.l | . . . . . 6
⊢ 𝐿 = (ℤRHom‘𝑍) | 
| 12 |  | dchrisum.b | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐷) | 
| 13 | 12 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) | 
| 14 |  | elfzelz 13564 | . . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℤ) | 
| 15 | 14 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ) | 
| 16 | 8, 9, 10, 11, 13, 15 | dchrzrhcl 27289 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) | 
| 17 | 16 | adantrr 717 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) | 
| 18 |  | elrabi 3687 | . . . . . . . . . 10
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} → 𝑑 ∈ ℕ) | 
| 19 | 18 | ad2antll 729 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑑 ∈ ℕ) | 
| 20 |  | mucl 27184 | . . . . . . . . 9
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℤ) | 
| 21 | 19, 20 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℤ) | 
| 22 | 21 | zred 12722 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℝ) | 
| 23 |  | elfznn 13593 | . . . . . . . 8
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) | 
| 24 | 23 | ad2antrl 728 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑛 ∈ ℕ) | 
| 25 | 22, 24 | nndivred 12320 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℝ) | 
| 26 | 25 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℂ) | 
| 27 | 24 | nnrpd 13075 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑛 ∈ ℝ+) | 
| 28 | 19 | nnrpd 13075 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → 𝑑 ∈ ℝ+) | 
| 29 | 27, 28 | rpdivcld 13094 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (𝑛 / 𝑑) ∈
ℝ+) | 
| 30 | 29 | relogcld 26665 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℝ) | 
| 31 | 30 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ) | 
| 32 | 26, 31 | mulcld 11281 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ) | 
| 33 | 17, 32 | mulcld 11281 | . . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) ∈ ℂ) | 
| 34 | 5, 7, 33 | dvdsflsumcom 27231 | . 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 35 |  | vmaf 27162 | . . . . . . . . . . . . 13
⊢
Λ:ℕ⟶ℝ | 
| 36 | 35 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 →
Λ:ℕ⟶ℝ) | 
| 37 |  | ax-resscn 11212 | . . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ | 
| 38 |  | fss 6752 | . . . . . . . . . . . 12
⊢
((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) →
Λ:ℕ⟶ℂ) | 
| 39 | 36, 37, 38 | sylancl 586 | . . . . . . . . . . 11
⊢ (𝜑 →
Λ:ℕ⟶ℂ) | 
| 40 |  | vmasum 27260 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ →
Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖) = (log‘𝑚)) | 
| 41 | 40 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖) = (log‘𝑚)) | 
| 42 | 41 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘𝑚) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖)) | 
| 43 | 42 | mpteq2dva 5242 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} (Λ‘𝑖))) | 
| 44 | 39, 43 | muinv 27236 | . . . . . . . . . 10
⊢ (𝜑 → Λ = (𝑛 ∈ ℕ ↦
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))) | 
| 45 | 44 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝜑 → (Λ‘𝑛) = ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛)) | 
| 46 |  | sumex 15724 | . . . . . . . . . 10
⊢
Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V | 
| 47 |  | eqid 2737 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) | 
| 48 | 47 | fvmpt2 7027 | . . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) | 
| 49 | 23, 46, 48 | sylancl 586 | . . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ ((𝑛 ∈ ℕ
↦ Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) | 
| 50 | 45, 49 | sylan9eq 2797 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) | 
| 51 |  | breq1 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑑 → (𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛)) | 
| 52 | 51 | elrab 3692 | . . . . . . . . . . . . . 14
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛)) | 
| 53 | 52 | simprbi 496 | . . . . . . . . . . . . 13
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} → 𝑑 ∥ 𝑛) | 
| 54 | 53 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑑 ∥ 𝑛) | 
| 55 | 23 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) | 
| 56 |  | nndivdvds 16299 | . . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑑 ∥ 𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ)) | 
| 57 | 55, 18, 56 | syl2an 596 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (𝑑 ∥ 𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ)) | 
| 58 | 54, 57 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (𝑛 / 𝑑) ∈ ℕ) | 
| 59 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 / 𝑑) → (log‘𝑚) = (log‘(𝑛 / 𝑑))) | 
| 60 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ ↦
(log‘𝑚)) = (𝑚 ∈ ℕ ↦
(log‘𝑚)) | 
| 61 |  | fvex 6919 | . . . . . . . . . . . 12
⊢
(log‘(𝑛 /
𝑑)) ∈
V | 
| 62 | 59, 60, 61 | fvmpt 7016 | . . . . . . . . . . 11
⊢ ((𝑛 / 𝑑) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑))) | 
| 63 | 58, 62 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑))) | 
| 64 | 63 | oveq2d 7447 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) | 
| 65 | 64 | sumeq2dv 15738 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) | 
| 66 | 50, 65 | eqtrd 2777 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑)))) | 
| 67 | 66 | oveq1d 7446 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛)) | 
| 68 |  | fzfid 14014 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin) | 
| 69 |  | dvdsssfz1 16355 | . . . . . . . . 9
⊢ (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) | 
| 70 | 55, 69 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ (1...𝑛)) | 
| 71 | 68, 70 | ssfid 9301 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ∈ Fin) | 
| 72 | 55 | nncnd 12282 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ) | 
| 73 | 21 | zcnd 12723 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛})) → (μ‘𝑑) ∈ ℂ) | 
| 74 | 73 | anassrs 467 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℂ) | 
| 75 | 31 | anassrs 467 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (log‘(𝑛 / 𝑑)) ∈ ℂ) | 
| 76 | 74, 75 | mulcld 11281 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) ∈ ℂ) | 
| 77 | 55 | nnne0d 12316 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0) | 
| 78 | 71, 72, 76, 77 | fsumdivc 15822 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛)) | 
| 79 | 18 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑑 ∈ ℕ) | 
| 80 | 79, 20 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℤ) | 
| 81 | 80 | zcnd 12723 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (μ‘𝑑) ∈ ℂ) | 
| 82 | 72 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑛 ∈ ℂ) | 
| 83 | 77 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑛 ≠ 0) | 
| 84 | 81, 75, 82, 83 | div23d 12080 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) | 
| 85 | 84 | sumeq2dv 15738 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) | 
| 86 | 67, 78, 85 | 3eqtrd 2781 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) | 
| 87 | 86 | oveq2d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = ((𝑋‘(𝐿‘𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) | 
| 88 | 32 | anassrs 467 | . . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ) | 
| 89 | 71, 16, 88 | fsummulc2 15820 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) | 
| 90 | 87, 89 | eqtrd 2777 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) | 
| 91 | 90 | sumeq2dv 15738 | . 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑋‘(𝐿‘𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))) | 
| 92 |  | fzfid 14014 | . . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin) | 
| 93 | 12 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) | 
| 94 |  | elfzelz 13564 | . . . . . . . 8
⊢ (𝑑 ∈
(1...(⌊‘𝐴))
→ 𝑑 ∈
ℤ) | 
| 95 | 94 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ) | 
| 96 | 8, 9, 10, 11, 93, 95 | dchrzrhcl 27289 | . . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑑)) ∈ ℂ) | 
| 97 |  | fznnfl 13902 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝐴))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝐴))) | 
| 98 | 7, 97 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴))) | 
| 99 | 98 | simprbda 498 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ) | 
| 100 | 99, 20 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ) | 
| 101 | 100 | zred 12722 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ) | 
| 102 | 101, 99 | nndivred 12320 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ) | 
| 103 | 102 | recnd 11289 | . . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ) | 
| 104 | 96, 103 | mulcld 11281 | . . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ) | 
| 105 | 12 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋 ∈ 𝐷) | 
| 106 |  | elfzelz 13564 | . . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℤ) | 
| 107 | 106 | adantl 481 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ) | 
| 108 | 8, 9, 10, 11, 105, 107 | dchrzrhcl 27289 | . . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) | 
| 109 |  | elfznn 13593 | . . . . . . . . . . 11
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℕ) | 
| 110 | 109 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ) | 
| 111 | 110 | nnrpd 13075 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+) | 
| 112 | 111 | relogcld 26665 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ) | 
| 113 | 112, 110 | nndivred 12320 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ) | 
| 114 | 113 | recnd 11289 | . . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ) | 
| 115 | 108, 114 | mulcld 11281 | . . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ) | 
| 116 | 92, 104, 115 | fsummulc2 15820 | . . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) | 
| 117 | 96 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘𝑑)) ∈ ℂ) | 
| 118 | 103 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) / 𝑑) ∈ ℂ) | 
| 119 | 117, 118,
108, 114 | mul4d 11473 | . . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = (((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))) | 
| 120 | 94 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ) | 
| 121 | 8, 9, 10, 11, 105, 120, 107 | dchrzrhmul 27290 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚)))) | 
| 122 | 101 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ) | 
| 123 | 122 | recnd 11289 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ) | 
| 124 | 112 | recnd 11289 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ) | 
| 125 | 99 | nnrpd 13075 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+) | 
| 126 | 125 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+) | 
| 127 | 126, 111 | rpmulcld 13093 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 · 𝑚) ∈
ℝ+) | 
| 128 | 127 | rpcnne0d 13086 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) | 
| 129 |  | div23 11941 | . . . . . . . . 9
⊢
(((μ‘𝑑)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) | 
| 130 | 123, 124,
128, 129 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) | 
| 131 | 126 | rpcnne0d 13086 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) | 
| 132 | 111 | rpcnne0d 13086 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) | 
| 133 |  | divmuldiv 11967 | . . . . . . . . 9
⊢
((((μ‘𝑑)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚))) | 
| 134 | 123, 124,
131, 132, 133 | syl22anc 839 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚))) | 
| 135 | 110 | nncnd 12282 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ) | 
| 136 | 126 | rpcnd 13079 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ) | 
| 137 | 126 | rpne0d 13082 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0) | 
| 138 | 135, 136,
137 | divcan3d 12048 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚) | 
| 139 | 138 | fveq2d 6910 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚)) | 
| 140 | 139 | oveq2d 7447 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚))) | 
| 141 | 130, 134,
140 | 3eqtr4rd 2788 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))) | 
| 142 | 121, 141 | oveq12d 7449 | . . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) = (((𝑋‘(𝐿‘𝑑)) · (𝑋‘(𝐿‘𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))) | 
| 143 | 119, 142 | eqtr4d 2780 | . . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 144 | 143 | sumeq2dv 15738 | . . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 145 | 116, 144 | eqtrd 2777 | . . 3
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 146 | 145 | sumeq2dv 15738 | . 2
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))) | 
| 147 | 34, 91, 146 | 3eqtr4d 2787 | 1
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |