MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem1 Structured version   Visualization version   GIF version

Theorem lgsquad2lem1 26532
Description: Lemma for lgsquad2 26534. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
lgsquad2lem1.a (𝜑𝐴 ∈ ℕ)
lgsquad2lem1.b (𝜑𝐵 ∈ ℕ)
lgsquad2lem1.m (𝜑 → (𝐴 · 𝐵) = 𝑀)
lgsquad2lem1.1 (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))
lgsquad2lem1.2 (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
Assertion
Ref Expression
lgsquad2lem1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))

Proof of Theorem lgsquad2lem1
StepHypRef Expression
1 lgsquad2lem1.m . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) = 𝑀)
2 lgsquad2lem1.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℕ)
32nnzd 12425 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
43zcnd 12427 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
5 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
6 npcan 11230 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
74, 5, 6sylancl 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 − 1) + 1) = 𝐴)
8 lgsquad2lem1.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℕ)
98nnzd 12425 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℤ)
109zcnd 12427 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
11 npcan 11230 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
1210, 5, 11sylancl 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − 1) + 1) = 𝐵)
137, 12oveq12d 7293 . . . . . . . . . . . 12 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = (𝐴 · 𝐵))
14 peano2zm 12363 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
153, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 − 1) ∈ ℤ)
1615zcnd 12427 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 − 1) ∈ ℂ)
175a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
18 peano2zm 12363 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
199, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℤ)
2019zcnd 12427 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℂ)
2116, 17, 20, 17muladdd 11433 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = ((((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) + (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1))))
22 1t1e1 12135 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
2322a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 1) = 1)
2423oveq2d 7291 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) = (((𝐴 − 1) · (𝐵 − 1)) + 1))
2516mulid1d 10992 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 − 1) · 1) = (𝐴 − 1))
2620mulid1d 10992 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 − 1) · 1) = (𝐵 − 1))
2725, 26oveq12d 7293 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1)) = ((𝐴 − 1) + (𝐵 − 1)))
2824, 27oveq12d 7293 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) + (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1))) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
2921, 28eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
3013, 29eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
311, 30eqtr3d 2780 . . . . . . . . . 10 (𝜑𝑀 = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
3231oveq1d 7290 . . . . . . . . 9 (𝜑 → (𝑀 − 1) = (((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))) − 1))
3316, 20mulcld 10995 . . . . . . . . . . 11 (𝜑 → ((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ)
34 addcl 10953 . . . . . . . . . . 11 ((((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) + 1) ∈ ℂ)
3533, 5, 34sylancl 586 . . . . . . . . . 10 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) + 1) ∈ ℂ)
3616, 20addcld 10994 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) + (𝐵 − 1)) ∈ ℂ)
3735, 36, 17addsubd 11353 . . . . . . . . 9 (𝜑 → (((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))) − 1) = (((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) + ((𝐴 − 1) + (𝐵 − 1))))
38 pncan 11227 . . . . . . . . . . 11 ((((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) = ((𝐴 − 1) · (𝐵 − 1)))
3933, 5, 38sylancl 586 . . . . . . . . . 10 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) = ((𝐴 − 1) · (𝐵 − 1)))
4039oveq1d 7290 . . . . . . . . 9 (𝜑 → (((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) + ((𝐴 − 1) + (𝐵 − 1))) = (((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))))
4132, 37, 403eqtrd 2782 . . . . . . . 8 (𝜑 → (𝑀 − 1) = (((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))))
4241oveq1d 7290 . . . . . . 7 (𝜑 → ((𝑀 − 1) / 2) = ((((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))) / 2))
43 2cnd 12051 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
44 2ne0 12077 . . . . . . . . 9 2 ≠ 0
4544a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
4633, 36, 43, 45divdird 11789 . . . . . . 7 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))) / 2) = ((((𝐴 − 1) · (𝐵 − 1)) / 2) + (((𝐴 − 1) + (𝐵 − 1)) / 2)))
4716, 20, 43, 45divassd 11786 . . . . . . . . 9 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) / 2) = ((𝐴 − 1) · ((𝐵 − 1) / 2)))
4816, 43, 45divcan2d 11753 . . . . . . . . . 10 (𝜑 → (2 · ((𝐴 − 1) / 2)) = (𝐴 − 1))
4948oveq1d 7290 . . . . . . . . 9 (𝜑 → ((2 · ((𝐴 − 1) / 2)) · ((𝐵 − 1) / 2)) = ((𝐴 − 1) · ((𝐵 − 1) / 2)))
50 lgsquad2.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ 2 ∥ 𝑀)
51 dvdsmul1 15987 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
523, 9, 51syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∥ (𝐴 · 𝐵))
5352, 1breqtrd 5100 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑀)
54 2z 12352 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
55 lgsquad2.1 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ)
5655nnzd 12425 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
57 dvdstr 16003 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 ∥ 𝐴𝐴𝑀) → 2 ∥ 𝑀))
5854, 3, 56, 57mp3an2i 1465 . . . . . . . . . . . . . . 15 (𝜑 → ((2 ∥ 𝐴𝐴𝑀) → 2 ∥ 𝑀))
5953, 58mpan2d 691 . . . . . . . . . . . . . 14 (𝜑 → (2 ∥ 𝐴 → 2 ∥ 𝑀))
6050, 59mtod 197 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 𝐴)
61 1zzd 12351 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
62 2prm 16397 . . . . . . . . . . . . . 14 2 ∈ ℙ
63 nprmdvds1 16411 . . . . . . . . . . . . . 14 (2 ∈ ℙ → ¬ 2 ∥ 1)
6462, 63mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 1)
65 omoe 16073 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐴 − 1))
663, 60, 61, 64, 65syl22anc 836 . . . . . . . . . . . 12 (𝜑 → 2 ∥ (𝐴 − 1))
67 dvdsval2 15966 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝐴 − 1) ∈ ℤ) → (2 ∥ (𝐴 − 1) ↔ ((𝐴 − 1) / 2) ∈ ℤ))
6854, 45, 15, 67mp3an2i 1465 . . . . . . . . . . . 12 (𝜑 → (2 ∥ (𝐴 − 1) ↔ ((𝐴 − 1) / 2) ∈ ℤ))
6966, 68mpbid 231 . . . . . . . . . . 11 (𝜑 → ((𝐴 − 1) / 2) ∈ ℤ)
7069zcnd 12427 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) / 2) ∈ ℂ)
71 dvdsmul2 15988 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 · 𝐵))
723, 9, 71syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∥ (𝐴 · 𝐵))
7372, 1breqtrd 5100 . . . . . . . . . . . . . . 15 (𝜑𝐵𝑀)
74 dvdstr 16003 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 ∥ 𝐵𝐵𝑀) → 2 ∥ 𝑀))
7554, 9, 56, 74mp3an2i 1465 . . . . . . . . . . . . . . 15 (𝜑 → ((2 ∥ 𝐵𝐵𝑀) → 2 ∥ 𝑀))
7673, 75mpan2d 691 . . . . . . . . . . . . . 14 (𝜑 → (2 ∥ 𝐵 → 2 ∥ 𝑀))
7750, 76mtod 197 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 𝐵)
78 omoe 16073 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐵 − 1))
799, 77, 61, 64, 78syl22anc 836 . . . . . . . . . . . 12 (𝜑 → 2 ∥ (𝐵 − 1))
80 dvdsval2 15966 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝐵 − 1) ∈ ℤ) → (2 ∥ (𝐵 − 1) ↔ ((𝐵 − 1) / 2) ∈ ℤ))
8154, 45, 19, 80mp3an2i 1465 . . . . . . . . . . . 12 (𝜑 → (2 ∥ (𝐵 − 1) ↔ ((𝐵 − 1) / 2) ∈ ℤ))
8279, 81mpbid 231 . . . . . . . . . . 11 (𝜑 → ((𝐵 − 1) / 2) ∈ ℤ)
8382zcnd 12427 . . . . . . . . . 10 (𝜑 → ((𝐵 − 1) / 2) ∈ ℂ)
8443, 70, 83mulassd 10998 . . . . . . . . 9 (𝜑 → ((2 · ((𝐴 − 1) / 2)) · ((𝐵 − 1) / 2)) = (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))))
8547, 49, 843eqtr2d 2784 . . . . . . . 8 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) / 2) = (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))))
8616, 20, 43, 45divdird 11789 . . . . . . . 8 (𝜑 → (((𝐴 − 1) + (𝐵 − 1)) / 2) = (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)))
8785, 86oveq12d 7293 . . . . . . 7 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) / 2) + (((𝐴 − 1) + (𝐵 − 1)) / 2)) = ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))))
8842, 46, 873eqtrd 2782 . . . . . 6 (𝜑 → ((𝑀 − 1) / 2) = ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))))
8988oveq1d 7290 . . . . 5 (𝜑 → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) = (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)))
9054a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
9169, 82zmulcld 12432 . . . . . . . 8 (𝜑 → (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) ∈ ℤ)
9290, 91zmulcld 12432 . . . . . . 7 (𝜑 → (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) ∈ ℤ)
9392zcnd 12427 . . . . . 6 (𝜑 → (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) ∈ ℂ)
9469, 82zaddcld 12430 . . . . . . 7 (𝜑 → (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) ∈ ℤ)
9594zcnd 12427 . . . . . 6 (𝜑 → (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) ∈ ℂ)
96 lgsquad2.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
9796nnzd 12425 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
98 lgsquad2.4 . . . . . . . . 9 (𝜑 → ¬ 2 ∥ 𝑁)
99 omoe 16073 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
10097, 98, 61, 64, 99syl22anc 836 . . . . . . . 8 (𝜑 → 2 ∥ (𝑁 − 1))
101 peano2zm 12363 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
10297, 101syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℤ)
103 dvdsval2 15966 . . . . . . . . 9 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
10454, 45, 102, 103mp3an2i 1465 . . . . . . . 8 (𝜑 → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
105100, 104mpbid 231 . . . . . . 7 (𝜑 → ((𝑁 − 1) / 2) ∈ ℤ)
106105zcnd 12427 . . . . . 6 (𝜑 → ((𝑁 − 1) / 2) ∈ ℂ)
10793, 95, 106adddird 11000 . . . . 5 (𝜑 → (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) = (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
10891zcnd 12427 . . . . . . 7 (𝜑 → (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) ∈ ℂ)
10943, 108, 106mulassd 10998 . . . . . 6 (𝜑 → ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) = (2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
110109oveq1d 7290 . . . . 5 (𝜑 → (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
11189, 107, 1103eqtrd 2782 . . . 4 (𝜑 → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) = ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
112111oveq2d 7291 . . 3 (𝜑 → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
113 neg1cn 12087 . . . . . 6 -1 ∈ ℂ
114113a1i 11 . . . . 5 (𝜑 → -1 ∈ ℂ)
115 neg1ne0 12089 . . . . . 6 -1 ≠ 0
116115a1i 11 . . . . 5 (𝜑 → -1 ≠ 0)
11791, 105zmulcld 12432 . . . . . 6 (𝜑 → ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)
11890, 117zmulcld 12432 . . . . 5 (𝜑 → (2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℤ)
11994, 105zmulcld 12432 . . . . 5 (𝜑 → ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)
120 expaddz 13827 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℤ ∧ ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
121114, 116, 118, 119, 120syl22anc 836 . . . 4 (𝜑 → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
122 expmulz 13829 . . . . . . 7 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
123114, 116, 90, 117, 122syl22anc 836 . . . . . 6 (𝜑 → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
124 neg1sqe1 13913 . . . . . . . 8 (-1↑2) = 1
125124oveq1i 7285 . . . . . . 7 ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))
126 1exp 13812 . . . . . . . 8 (((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ → (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
127117, 126syl 17 . . . . . . 7 (𝜑 → (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
128125, 127eqtrid 2790 . . . . . 6 (𝜑 → ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
129123, 128eqtrd 2778 . . . . 5 (𝜑 → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = 1)
130129oveq1d 7290 . . . 4 (𝜑 → ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
131121, 130eqtrd 2778 . . 3 (𝜑 → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
132114, 116, 119expclzd 13869 . . . . 5 (𝜑 → (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℂ)
133132mulid2d 10993 . . . 4 (𝜑 → (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
13470, 83, 106adddird 11000 . . . . 5 (𝜑 → ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) = ((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
135134oveq2d 7291 . . . 4 (𝜑 → (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
136133, 135eqtrd 2778 . . 3 (𝜑 → (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
137112, 131, 1363eqtrd 2782 . 2 (𝜑 → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
138 lgsquad2lem1.1 . . . 4 (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))
139 lgsquad2lem1.2 . . . 4 (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
140138, 139oveq12d 7293 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
14169, 105zmulcld 12432 . . . 4 (𝜑 → (((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
14282, 105zmulcld 12432 . . . 4 (𝜑 → (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
143 expaddz 13827 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ ∧ (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
144114, 116, 141, 142, 143syl22anc 836 . . 3 (𝜑 → (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
145140, 144eqtr4d 2781 . 2 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
146 lgscl 26459 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
1473, 97, 146syl2anc 584 . . . . 5 (𝜑 → (𝐴 /L 𝑁) ∈ ℤ)
148147zcnd 12427 . . . 4 (𝜑 → (𝐴 /L 𝑁) ∈ ℂ)
149 lgscl 26459 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
1509, 97, 149syl2anc 584 . . . . 5 (𝜑 → (𝐵 /L 𝑁) ∈ ℤ)
151150zcnd 12427 . . . 4 (𝜑 → (𝐵 /L 𝑁) ∈ ℂ)
152 lgscl 26459 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 /L 𝐴) ∈ ℤ)
15397, 3, 152syl2anc 584 . . . . 5 (𝜑 → (𝑁 /L 𝐴) ∈ ℤ)
154153zcnd 12427 . . . 4 (𝜑 → (𝑁 /L 𝐴) ∈ ℂ)
155 lgscl 26459 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 /L 𝐵) ∈ ℤ)
15697, 9, 155syl2anc 584 . . . . 5 (𝜑 → (𝑁 /L 𝐵) ∈ ℤ)
157156zcnd 12427 . . . 4 (𝜑 → (𝑁 /L 𝐵) ∈ ℂ)
158148, 151, 154, 157mul4d 11187 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) · ((𝑁 /L 𝐴) · (𝑁 /L 𝐵))) = (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))))
1592nnne0d 12023 . . . . . 6 (𝜑𝐴 ≠ 0)
1608nnne0d 12023 . . . . . 6 (𝜑𝐵 ≠ 0)
161 lgsdir 26480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
1623, 9, 97, 159, 160, 161syl32anc 1377 . . . . 5 (𝜑 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
1631oveq1d 7290 . . . . 5 (𝜑 → ((𝐴 · 𝐵) /L 𝑁) = (𝑀 /L 𝑁))
164162, 163eqtr3d 2780 . . . 4 (𝜑 → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (𝑀 /L 𝑁))
165 lgsdi 26482 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝑁 /L (𝐴 · 𝐵)) = ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)))
16697, 3, 9, 159, 160, 165syl32anc 1377 . . . . 5 (𝜑 → (𝑁 /L (𝐴 · 𝐵)) = ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)))
1671oveq2d 7291 . . . . 5 (𝜑 → (𝑁 /L (𝐴 · 𝐵)) = (𝑁 /L 𝑀))
168166, 167eqtr3d 2780 . . . 4 (𝜑 → ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)) = (𝑁 /L 𝑀))
169164, 168oveq12d 7293 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) · ((𝑁 /L 𝐴) · (𝑁 /L 𝐵))) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
170158, 169eqtr3d 2780 . 2 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
171137, 145, 1703eqtr2rd 2785 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cexp 13782  cdvds 15963   gcd cgcd 16201  cprime 16376   /L clgs 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-lgs 26443
This theorem is referenced by:  lgsquad2lem2  26533
  Copyright terms: Public domain W3C validator