Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2lem2 Structured version   Visualization version   GIF version

Theorem wallispi2lem2 46057
Description: Two expressions are proven to be equal, and this is used to complete the proof of the second version of Wallis' formula for π . (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Assertion
Ref Expression
wallispi2lem2 (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2)))

Proof of Theorem wallispi2lem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . 3 (𝑥 = 1 → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘1))
2 oveq2 7361 . . . . . 6 (𝑥 = 1 → (4 · 𝑥) = (4 · 1))
32oveq2d 7369 . . . . 5 (𝑥 = 1 → (2↑(4 · 𝑥)) = (2↑(4 · 1)))
4 fveq2 6826 . . . . . 6 (𝑥 = 1 → (!‘𝑥) = (!‘1))
54oveq1d 7368 . . . . 5 (𝑥 = 1 → ((!‘𝑥)↑4) = ((!‘1)↑4))
63, 5oveq12d 7371 . . . 4 (𝑥 = 1 → ((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) = ((2↑(4 · 1)) · ((!‘1)↑4)))
7 oveq2 7361 . . . . . 6 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
87fveq2d 6830 . . . . 5 (𝑥 = 1 → (!‘(2 · 𝑥)) = (!‘(2 · 1)))
98oveq1d 7368 . . . 4 (𝑥 = 1 → ((!‘(2 · 𝑥))↑2) = ((!‘(2 · 1))↑2))
106, 9oveq12d 7371 . . 3 (𝑥 = 1 → (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) = (((2↑(4 · 1)) · ((!‘1)↑4)) / ((!‘(2 · 1))↑2)))
111, 10eqeq12d 2745 . 2 (𝑥 = 1 → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) ↔ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘1) = (((2↑(4 · 1)) · ((!‘1)↑4)) / ((!‘(2 · 1))↑2))))
12 fveq2 6826 . . 3 (𝑥 = 𝑦 → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦))
13 oveq2 7361 . . . . . 6 (𝑥 = 𝑦 → (4 · 𝑥) = (4 · 𝑦))
1413oveq2d 7369 . . . . 5 (𝑥 = 𝑦 → (2↑(4 · 𝑥)) = (2↑(4 · 𝑦)))
15 fveq2 6826 . . . . . 6 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
1615oveq1d 7368 . . . . 5 (𝑥 = 𝑦 → ((!‘𝑥)↑4) = ((!‘𝑦)↑4))
1714, 16oveq12d 7371 . . . 4 (𝑥 = 𝑦 → ((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) = ((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)))
18 oveq2 7361 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
1918fveq2d 6830 . . . . 5 (𝑥 = 𝑦 → (!‘(2 · 𝑥)) = (!‘(2 · 𝑦)))
2019oveq1d 7368 . . . 4 (𝑥 = 𝑦 → ((!‘(2 · 𝑥))↑2) = ((!‘(2 · 𝑦))↑2))
2117, 20oveq12d 7371 . . 3 (𝑥 = 𝑦 → (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)))
2212, 21eqeq12d 2745 . 2 (𝑥 = 𝑦 → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) ↔ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))))
23 fveq2 6826 . . 3 (𝑥 = (𝑦 + 1) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)))
24 oveq2 7361 . . . . . 6 (𝑥 = (𝑦 + 1) → (4 · 𝑥) = (4 · (𝑦 + 1)))
2524oveq2d 7369 . . . . 5 (𝑥 = (𝑦 + 1) → (2↑(4 · 𝑥)) = (2↑(4 · (𝑦 + 1))))
26 fveq2 6826 . . . . . 6 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
2726oveq1d 7368 . . . . 5 (𝑥 = (𝑦 + 1) → ((!‘𝑥)↑4) = ((!‘(𝑦 + 1))↑4))
2825, 27oveq12d 7371 . . . 4 (𝑥 = (𝑦 + 1) → ((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) = ((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)))
29 oveq2 7361 . . . . . 6 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
3029fveq2d 6830 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘(2 · 𝑥)) = (!‘(2 · (𝑦 + 1))))
3130oveq1d 7368 . . . 4 (𝑥 = (𝑦 + 1) → ((!‘(2 · 𝑥))↑2) = ((!‘(2 · (𝑦 + 1)))↑2))
3228, 31oveq12d 7371 . . 3 (𝑥 = (𝑦 + 1) → (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2)))
3323, 32eqeq12d 2745 . 2 (𝑥 = (𝑦 + 1) → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) ↔ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2))))
34 fveq2 6826 . . 3 (𝑥 = 𝑁 → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁))
35 oveq2 7361 . . . . . 6 (𝑥 = 𝑁 → (4 · 𝑥) = (4 · 𝑁))
3635oveq2d 7369 . . . . 5 (𝑥 = 𝑁 → (2↑(4 · 𝑥)) = (2↑(4 · 𝑁)))
37 fveq2 6826 . . . . . 6 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
3837oveq1d 7368 . . . . 5 (𝑥 = 𝑁 → ((!‘𝑥)↑4) = ((!‘𝑁)↑4))
3936, 38oveq12d 7371 . . . 4 (𝑥 = 𝑁 → ((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) = ((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)))
40 oveq2 7361 . . . . . 6 (𝑥 = 𝑁 → (2 · 𝑥) = (2 · 𝑁))
4140fveq2d 6830 . . . . 5 (𝑥 = 𝑁 → (!‘(2 · 𝑥)) = (!‘(2 · 𝑁)))
4241oveq1d 7368 . . . 4 (𝑥 = 𝑁 → ((!‘(2 · 𝑥))↑2) = ((!‘(2 · 𝑁))↑2))
4339, 42oveq12d 7371 . . 3 (𝑥 = 𝑁 → (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2)))
4434, 43eqeq12d 2745 . 2 (𝑥 = 𝑁 → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑥) = (((2↑(4 · 𝑥)) · ((!‘𝑥)↑4)) / ((!‘(2 · 𝑥))↑2)) ↔ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2))))
45 1z 12523 . . . 4 1 ∈ ℤ
46 seq1 13939 . . . 4 (1 ∈ ℤ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘1) = ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘1))
4745, 46ax-mp 5 . . 3 (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘1) = ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘1)
48 1nn 12157 . . . 4 1 ∈ ℕ
49 oveq2 7361 . . . . . . 7 (𝑘 = 1 → (2 · 𝑘) = (2 · 1))
5049oveq1d 7368 . . . . . 6 (𝑘 = 1 → ((2 · 𝑘)↑4) = ((2 · 1)↑4))
5149oveq1d 7368 . . . . . . . 8 (𝑘 = 1 → ((2 · 𝑘) − 1) = ((2 · 1) − 1))
5249, 51oveq12d 7371 . . . . . . 7 (𝑘 = 1 → ((2 · 𝑘) · ((2 · 𝑘) − 1)) = ((2 · 1) · ((2 · 1) − 1)))
5352oveq1d 7368 . . . . . 6 (𝑘 = 1 → (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2) = (((2 · 1) · ((2 · 1) − 1))↑2))
5450, 53oveq12d 7371 . . . . 5 (𝑘 = 1 → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · 1)↑4) / (((2 · 1) · ((2 · 1) − 1))↑2)))
55 eqid 2729 . . . . 5 (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))
56 ovex 7386 . . . . 5 (((2 · 1)↑4) / (((2 · 1) · ((2 · 1) − 1))↑2)) ∈ V
5754, 55, 56fvmpt 6934 . . . 4 (1 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘1) = (((2 · 1)↑4) / (((2 · 1) · ((2 · 1) − 1))↑2)))
5848, 57ax-mp 5 . . 3 ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘1) = (((2 · 1)↑4) / (((2 · 1) · ((2 · 1) − 1))↑2))
59 2t1e2 12304 . . . . . 6 (2 · 1) = 2
6059oveq1i 7363 . . . . 5 ((2 · 1)↑4) = (2↑4)
61 2exp4 17014 . . . . . . 7 (2↑4) = 16
62 1nn0 12418 . . . . . . . 8 1 ∈ ℕ0
63 6nn0 12423 . . . . . . . 8 6 ∈ ℕ0
64 0nn0 12417 . . . . . . . 8 0 ∈ ℕ0
65 1t1e1 12303 . . . . . . . . . 10 (1 · 1) = 1
6665oveq1i 7363 . . . . . . . . 9 ((1 · 1) + 0) = (1 + 0)
67 1p0e1 12265 . . . . . . . . 9 (1 + 0) = 1
6866, 67eqtri 2752 . . . . . . . 8 ((1 · 1) + 0) = 1
69 6cn 12237 . . . . . . . . . 10 6 ∈ ℂ
7069mulridi 11138 . . . . . . . . 9 (6 · 1) = 6
7163dec0h 12631 . . . . . . . . 9 6 = 06
7270, 71eqtri 2752 . . . . . . . 8 (6 · 1) = 06
7362, 62, 63, 61, 63, 64, 68, 72decmul1c 12674 . . . . . . 7 ((2↑4) · 1) = 16
7461, 73eqtr4i 2755 . . . . . 6 (2↑4) = ((2↑4) · 1)
75 2nn0 12419 . . . . . . . . 9 2 ∈ ℕ0
76 2t2e4 12305 . . . . . . . . 9 (2 · 2) = 4
77 sq1 14120 . . . . . . . . 9 (1↑2) = 1
7862, 75, 76, 77, 65numexp2x 17008 . . . . . . . 8 (1↑4) = 1
7978eqcomi 2738 . . . . . . 7 1 = (1↑4)
8079oveq2i 7364 . . . . . 6 ((2↑4) · 1) = ((2↑4) · (1↑4))
81 4cn 12231 . . . . . . . . . 10 4 ∈ ℂ
8281mulridi 11138 . . . . . . . . 9 (4 · 1) = 4
8382eqcomi 2738 . . . . . . . 8 4 = (4 · 1)
8483oveq2i 7364 . . . . . . 7 (2↑4) = (2↑(4 · 1))
85 fac1 14202 . . . . . . . . 9 (!‘1) = 1
8685eqcomi 2738 . . . . . . . 8 1 = (!‘1)
8786oveq1i 7363 . . . . . . 7 (1↑4) = ((!‘1)↑4)
8884, 87oveq12i 7365 . . . . . 6 ((2↑4) · (1↑4)) = ((2↑(4 · 1)) · ((!‘1)↑4))
8974, 80, 883eqtri 2756 . . . . 5 (2↑4) = ((2↑(4 · 1)) · ((!‘1)↑4))
9060, 89eqtri 2752 . . . 4 ((2 · 1)↑4) = ((2↑(4 · 1)) · ((!‘1)↑4))
9159oveq1i 7363 . . . . . . . 8 ((2 · 1) − 1) = (2 − 1)
92 2m1e1 12267 . . . . . . . 8 (2 − 1) = 1
9391, 92eqtri 2752 . . . . . . 7 ((2 · 1) − 1) = 1
9493oveq2i 7364 . . . . . 6 ((2 · 1) · ((2 · 1) − 1)) = ((2 · 1) · 1)
9559oveq1i 7363 . . . . . . 7 ((2 · 1) · 1) = (2 · 1)
9695, 59eqtri 2752 . . . . . 6 ((2 · 1) · 1) = 2
9759fveq2i 6829 . . . . . . . 8 (!‘(2 · 1)) = (!‘2)
98 fac2 14204 . . . . . . . 8 (!‘2) = 2
9997, 98eqtri 2752 . . . . . . 7 (!‘(2 · 1)) = 2
10099eqcomi 2738 . . . . . 6 2 = (!‘(2 · 1))
10194, 96, 1003eqtri 2756 . . . . 5 ((2 · 1) · ((2 · 1) − 1)) = (!‘(2 · 1))
102101oveq1i 7363 . . . 4 (((2 · 1) · ((2 · 1) − 1))↑2) = ((!‘(2 · 1))↑2)
10390, 102oveq12i 7365 . . 3 (((2 · 1)↑4) / (((2 · 1) · ((2 · 1) − 1))↑2)) = (((2↑(4 · 1)) · ((!‘1)↑4)) / ((!‘(2 · 1))↑2))
10447, 58, 1033eqtri 2756 . 2 (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘1) = (((2↑(4 · 1)) · ((!‘1)↑4)) / ((!‘(2 · 1))↑2))
105 elnnuz 12797 . . . . . . 7 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
106105biimpi 216 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘1))
107106adantr 480 . . . . 5 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → 𝑦 ∈ (ℤ‘1))
108 seqp1 13941 . . . . 5 (𝑦 ∈ (ℤ‘1) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)) = ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))))
109107, 108syl 17 . . . 4 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)) = ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))))
110 simpr 484 . . . . 5 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)))
111110oveq1d 7368 . . . 4 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))) = ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))))
112 eqidd 2730 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))
113 oveq2 7361 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → (2 · 𝑘) = (2 · (𝑦 + 1)))
114113oveq1d 7368 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → ((2 · 𝑘)↑4) = ((2 · (𝑦 + 1))↑4))
115113oveq1d 7368 . . . . . . . . . . . 12 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) − 1) = ((2 · (𝑦 + 1)) − 1))
116113, 115oveq12d 7371 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) · ((2 · 𝑘) − 1)) = ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)))
117116oveq1d 7368 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2) = (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))
118114, 117oveq12d 7371 . . . . . . . . 9 (𝑘 = (𝑦 + 1) → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)))
119118adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑘 = (𝑦 + 1)) → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)))
120 peano2nn 12158 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
121 2cnd 12224 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ∈ ℂ)
122 nncn 12154 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
123 1cnd 11129 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 1 ∈ ℂ)
124122, 123addcld 11153 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
125121, 124mulcld 11154 . . . . . . . . . 10 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
126 4nn0 12421 . . . . . . . . . . 11 4 ∈ ℕ0
127126a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 4 ∈ ℕ0)
128125, 127expcld 14071 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1))↑4) ∈ ℂ)
129125, 123subcld 11493 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ∈ ℂ)
130125, 129mulcld 11154 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)) ∈ ℂ)
131130sqcld 14069 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2) ∈ ℂ)
132 2pos 12249 . . . . . . . . . . . . . 14 0 < 2
133132a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 2)
134133gt0ne0d 11702 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
135120nnne0d 12196 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ≠ 0)
136121, 124, 134, 135mulne0d 11790 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 0)
137 1red 11135 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ∈ ℝ)
138 2re 12220 . . . . . . . . . . . . . . 15 2 ∈ ℝ
139138a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ∈ ℝ)
140 nnre 12153 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
141140, 137readdcld 11163 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℝ)
142 1lt2 12312 . . . . . . . . . . . . . . 15 1 < 2
143142a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 < 2)
144 nnrp 12923 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
145137, 144ltaddrp2d 12989 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
146139, 141, 143, 145mulgt1d 12079 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 < (2 · (𝑦 + 1)))
147137, 146gtned 11269 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 1)
148125, 123, 147subne0d 11502 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ≠ 0)
149125, 129, 136, 148mulne0d 11790 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)) ≠ 0)
150 2z 12525 . . . . . . . . . . 11 2 ∈ ℤ
151150a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
152130, 149, 151expne0d 14077 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2) ≠ 0)
153128, 131, 152divcld 11918 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)) ∈ ℂ)
154112, 119, 120, 153fvmptd 6941 . . . . . . 7 (𝑦 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1)) = (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)))
155154oveq2d 7369 . . . . . 6 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))) = ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))))
156 nnnn0 12409 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
157127, 156nn0mulcld 12468 . . . . . . . . . 10 (𝑦 ∈ ℕ → (4 · 𝑦) ∈ ℕ0)
158121, 157expcld 14071 . . . . . . . . 9 (𝑦 ∈ ℕ → (2↑(4 · 𝑦)) ∈ ℂ)
159 faccl 14208 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (!‘𝑦) ∈ ℕ)
160 nncn 12154 . . . . . . . . . . 11 ((!‘𝑦) ∈ ℕ → (!‘𝑦) ∈ ℂ)
161156, 159, 1603syl 18 . . . . . . . . . 10 (𝑦 ∈ ℕ → (!‘𝑦) ∈ ℂ)
162161, 127expcld 14071 . . . . . . . . 9 (𝑦 ∈ ℕ → ((!‘𝑦)↑4) ∈ ℂ)
163158, 162mulcld 11154 . . . . . . . 8 (𝑦 ∈ ℕ → ((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) ∈ ℂ)
16475a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ∈ ℕ0)
165164, 156nn0mulcld 12468 . . . . . . . . . 10 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ0)
166 faccl 14208 . . . . . . . . . 10 ((2 · 𝑦) ∈ ℕ0 → (!‘(2 · 𝑦)) ∈ ℕ)
167 nncn 12154 . . . . . . . . . 10 ((!‘(2 · 𝑦)) ∈ ℕ → (!‘(2 · 𝑦)) ∈ ℂ)
168165, 166, 1673syl 18 . . . . . . . . 9 (𝑦 ∈ ℕ → (!‘(2 · 𝑦)) ∈ ℂ)
169168sqcld 14069 . . . . . . . 8 (𝑦 ∈ ℕ → ((!‘(2 · 𝑦))↑2) ∈ ℂ)
170165, 166syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (!‘(2 · 𝑦)) ∈ ℕ)
171170nnne0d 12196 . . . . . . . . 9 (𝑦 ∈ ℕ → (!‘(2 · 𝑦)) ≠ 0)
172168, 171, 151expne0d 14077 . . . . . . . 8 (𝑦 ∈ ℕ → ((!‘(2 · 𝑦))↑2) ≠ 0)
173163, 169, 128, 131, 172, 152divmuldivd 11959 . . . . . . 7 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))) = ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2 · (𝑦 + 1))↑4)) / (((!‘(2 · 𝑦))↑2) · (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))))
174121, 124, 127mulexpd 14086 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1))↑4) = ((2↑4) · ((𝑦 + 1)↑4)))
175174oveq2d 7369 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2 · (𝑦 + 1))↑4)) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2↑4) · ((𝑦 + 1)↑4))))
176121, 127expcld 14071 . . . . . . . . . 10 (𝑦 ∈ ℕ → (2↑4) ∈ ℂ)
177124, 127expcld 14071 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((𝑦 + 1)↑4) ∈ ℂ)
178158, 162, 176, 177mul4d 11346 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2↑4) · ((𝑦 + 1)↑4))) = (((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦)↑4) · ((𝑦 + 1)↑4))))
179161, 124, 127mulexpd 14086 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((!‘𝑦) · (𝑦 + 1))↑4) = (((!‘𝑦)↑4) · ((𝑦 + 1)↑4)))
180179eqcomd 2735 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((!‘𝑦)↑4) · ((𝑦 + 1)↑4)) = (((!‘𝑦) · (𝑦 + 1))↑4))
181180oveq2d 7369 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦)↑4) · ((𝑦 + 1)↑4))) = (((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)))
182175, 178, 1813eqtrd 2768 . . . . . . . 8 (𝑦 ∈ ℕ → (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2 · (𝑦 + 1))↑4)) = (((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)))
183121, 122mulcld 11154 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
184183, 123addcld 11153 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℂ)
185125, 184mulcomd 11155 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · ((2 · 𝑦) + 1)) = (((2 · 𝑦) + 1) · (2 · (𝑦 + 1))))
186185oveq2d 7369 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · 𝑦) + 1))) = ((!‘(2 · 𝑦)) · (((2 · 𝑦) + 1) · (2 · (𝑦 + 1)))))
187121, 122, 123adddid 11158 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
188187oveq1d 7368 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = (((2 · 𝑦) + (2 · 1)) − 1))
18959, 121eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 1) ∈ ℂ)
190183, 189, 123addsubassd 11513 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · 𝑦) + (2 · 1)) − 1) = ((2 · 𝑦) + ((2 · 1) − 1)))
19159a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (2 · 1) = 2)
192191oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((2 · 1) − 1) = (2 − 1))
193192, 92eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 1) − 1) = 1)
194193oveq2d 7369 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) + ((2 · 1) − 1)) = ((2 · 𝑦) + 1))
195188, 190, 1943eqtrd 2768 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = ((2 · 𝑦) + 1))
196195oveq2d 7369 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)) = ((2 · (𝑦 + 1)) · ((2 · 𝑦) + 1)))
197196oveq2d 7369 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))) = ((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · 𝑦) + 1))))
198168, 184, 125mulassd 11157 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1))) = ((!‘(2 · 𝑦)) · (((2 · 𝑦) + 1) · (2 · (𝑦 + 1)))))
199186, 197, 1983eqtr4d 2774 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))) = (((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1))))
200199oveq1d 7368 . . . . . . . . 9 (𝑦 ∈ ℕ → (((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)))↑2) = ((((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1)))↑2))
201168, 130, 164mulexpd 14086 . . . . . . . . 9 (𝑦 ∈ ℕ → (((!‘(2 · 𝑦)) · ((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1)))↑2) = (((!‘(2 · 𝑦))↑2) · (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)))
202 df-2 12209 . . . . . . . . . . . . . . 15 2 = (1 + 1)
203202a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 = (1 + 1))
204203oveq2d 7369 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 2) = ((2 · 𝑦) + (1 + 1)))
205183, 123, 123addassd 11156 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
206204, 205eqtr4d 2767 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 2) = (((2 · 𝑦) + 1) + 1))
207206fveq2d 6830 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (!‘((2 · 𝑦) + 2)) = (!‘(((2 · 𝑦) + 1) + 1)))
20862a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ∈ ℕ0)
209165, 208nn0addcld 12467 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℕ0)
210 facp1 14203 . . . . . . . . . . . 12 (((2 · 𝑦) + 1) ∈ ℕ0 → (!‘(((2 · 𝑦) + 1) + 1)) = ((!‘((2 · 𝑦) + 1)) · (((2 · 𝑦) + 1) + 1)))
211209, 210syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (!‘(((2 · 𝑦) + 1) + 1)) = ((!‘((2 · 𝑦) + 1)) · (((2 · 𝑦) + 1) + 1)))
212 facp1 14203 . . . . . . . . . . . . 13 ((2 · 𝑦) ∈ ℕ0 → (!‘((2 · 𝑦) + 1)) = ((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)))
213165, 212syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (!‘((2 · 𝑦) + 1)) = ((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)))
214203eqcomd 2735 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 + 1) = 2)
215214oveq2d 7369 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + 2))
216214, 202, 593eqtr4g 2789 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 2 = (2 · 1))
217216oveq2d 7369 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) + 2) = ((2 · 𝑦) + (2 · 1)))
218217, 187eqtr4d 2767 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 2) = (2 · (𝑦 + 1)))
219205, 215, 2183eqtrd 2768 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
220213, 219oveq12d 7371 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((!‘((2 · 𝑦) + 1)) · (((2 · 𝑦) + 1) + 1)) = (((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1))))
221207, 211, 2203eqtrrd 2769 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1))) = (!‘((2 · 𝑦) + 2)))
222221oveq1d 7368 . . . . . . . . 9 (𝑦 ∈ ℕ → ((((!‘(2 · 𝑦)) · ((2 · 𝑦) + 1)) · (2 · (𝑦 + 1)))↑2) = ((!‘((2 · 𝑦) + 2))↑2))
223200, 201, 2223eqtr3d 2772 . . . . . . . 8 (𝑦 ∈ ℕ → (((!‘(2 · 𝑦))↑2) · (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2)) = ((!‘((2 · 𝑦) + 2))↑2))
224182, 223oveq12d 7371 . . . . . . 7 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) · ((2 · (𝑦 + 1))↑4)) / (((!‘(2 · 𝑦))↑2) · (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))) = ((((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)) / ((!‘((2 · 𝑦) + 2))↑2)))
225173, 224eqtrd 2764 . . . . . 6 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · (((2 · (𝑦 + 1))↑4) / (((2 · (𝑦 + 1)) · ((2 · (𝑦 + 1)) − 1))↑2))) = ((((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)) / ((!‘((2 · 𝑦) + 2))↑2)))
22683a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 4 = (4 · 1))
227226oveq2d 7369 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((4 · 𝑦) + 4) = ((4 · 𝑦) + (4 · 1)))
228227oveq2d 7369 . . . . . . . . 9 (𝑦 ∈ ℕ → (2↑((4 · 𝑦) + 4)) = (2↑((4 · 𝑦) + (4 · 1))))
229121, 127, 157expaddd 14073 . . . . . . . . 9 (𝑦 ∈ ℕ → (2↑((4 · 𝑦) + 4)) = ((2↑(4 · 𝑦)) · (2↑4)))
23081a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 4 ∈ ℂ)
231230, 122, 123adddid 11158 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (4 · (𝑦 + 1)) = ((4 · 𝑦) + (4 · 1)))
232231eqcomd 2735 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((4 · 𝑦) + (4 · 1)) = (4 · (𝑦 + 1)))
233232oveq2d 7369 . . . . . . . . 9 (𝑦 ∈ ℕ → (2↑((4 · 𝑦) + (4 · 1))) = (2↑(4 · (𝑦 + 1))))
234228, 229, 2333eqtr3d 2772 . . . . . . . 8 (𝑦 ∈ ℕ → ((2↑(4 · 𝑦)) · (2↑4)) = (2↑(4 · (𝑦 + 1))))
235 facp1 14203 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
236156, 235syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
237236eqcomd 2735 . . . . . . . . 9 (𝑦 ∈ ℕ → ((!‘𝑦) · (𝑦 + 1)) = (!‘(𝑦 + 1)))
238237oveq1d 7368 . . . . . . . 8 (𝑦 ∈ ℕ → (((!‘𝑦) · (𝑦 + 1))↑4) = ((!‘(𝑦 + 1))↑4))
239234, 238oveq12d 7371 . . . . . . 7 (𝑦 ∈ ℕ → (((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)) = ((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)))
240218fveq2d 6830 . . . . . . . 8 (𝑦 ∈ ℕ → (!‘((2 · 𝑦) + 2)) = (!‘(2 · (𝑦 + 1))))
241240oveq1d 7368 . . . . . . 7 (𝑦 ∈ ℕ → ((!‘((2 · 𝑦) + 2))↑2) = ((!‘(2 · (𝑦 + 1)))↑2))
242239, 241oveq12d 7371 . . . . . 6 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · (2↑4)) · (((!‘𝑦) · (𝑦 + 1))↑4)) / ((!‘((2 · 𝑦) + 2))↑2)) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2)))
243155, 225, 2423eqtrd 2768 . . . . 5 (𝑦 ∈ ℕ → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2)))
244243adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → ((((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) · ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘(𝑦 + 1))) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2)))
245109, 111, 2443eqtrd 2768 . . 3 ((𝑦 ∈ ℕ ∧ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2))) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2)))
246245ex 412 . 2 (𝑦 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑦) = (((2↑(4 · 𝑦)) · ((!‘𝑦)↑4)) / ((!‘(2 · 𝑦))↑2)) → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘(𝑦 + 1)) = (((2↑(4 · (𝑦 + 1))) · ((!‘(𝑦 + 1))↑4)) / ((!‘(2 · (𝑦 + 1)))↑2))))
24711, 22, 33, 44, 104, 246nnind 12164 1 (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  4c4 12203  6c6 12205  0cn0 12402  cz 12489  cdc 12609  cuz 12753  seqcseq 13926  cexp 13986  !cfa 14198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-fac 14199
This theorem is referenced by:  wallispi2  46058
  Copyright terms: Public domain W3C validator