MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2lem Structured version   Visualization version   GIF version

Theorem dchrvmasum2lem 27540
Description: Give an expression for log𝑥 remarkably similar to Σ𝑛𝑥(𝑋(𝑛)Λ(𝑛) / 𝑛) given in dchrvmasumlem1 27539. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2lem (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Distinct variable groups:   1 ,𝑚   𝑚,𝑑,𝐴   𝑚,𝑁   𝜑,𝑑,𝑚   𝑚,𝑍   𝐷,𝑚   𝐿,𝑑,𝑚   𝑋,𝑑,𝑚
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2lem
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6911 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
2 id 22 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
31, 2oveq12d 7449 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
4 oveq2 7439 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝐴 / 𝑛) = (𝐴 / (𝑑 · 𝑚)))
54fveq2d 6910 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / (𝑑 · 𝑚))))
63, 5oveq12d 7449 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))))
76oveq2d 7447 . . 3 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
8 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
98rpred 13077 . . 3 (𝜑𝐴 ∈ ℝ)
10 elrabi 3687 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
1110ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
12 mucl 27184 . . . . . 6 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1311, 12syl 17 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
1413zcnd 12723 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
15 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
16 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
17 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
18 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
19 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
2019adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
21 elfzelz 13564 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
2221adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
2315, 16, 17, 18, 20, 22dchrzrhcl 27289 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
24 elfznn 13593 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
2625nncnd 12282 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
2725nnne0d 12316 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
2823, 26, 27divcld 12043 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
2924nnrpd 13075 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℝ+)
30 rpdivcl 13060 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℝ+)
318, 29, 30syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ+)
3231relogcld 26665 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℝ)
3332recnd 11289 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℂ)
3428, 33mulcld 11281 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3534adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3614, 35mulcld 11281 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) ∈ ℂ)
377, 9, 36dvdsflsumcom 27231 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
38 2fveq3 6911 . . . . . 6 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
39 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4038, 39oveq12d 7449 . . . . 5 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
41 oveq2 7439 . . . . . 6 (𝑛 = 1 → (𝐴 / 𝑛) = (𝐴 / 1))
4241fveq2d 6910 . . . . 5 (𝑛 = 1 → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / 1)))
4340, 42oveq12d 7449 . . . 4 (𝑛 = 1 → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
44 fzfid 14014 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
45 fz1ssnn 13595 . . . . 5 (1...(⌊‘𝐴)) ⊆ ℕ
4645a1i 11 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
47 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
48 flge1nn 13861 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
499, 47, 48syl2anc 584 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℕ)
50 nnuz 12921 . . . . . 6 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2851 . . . . 5 (𝜑 → (⌊‘𝐴) ∈ (ℤ‘1))
52 eluzfz1 13571 . . . . 5 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
5351, 52syl 17 . . . 4 (𝜑 → 1 ∈ (1...(⌊‘𝐴)))
5443, 44, 46, 53, 34musumsum 27235 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
5515, 16, 17, 18, 19dchrzrh1 27288 . . . . . 6 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
5655oveq1d 7446 . . . . 5 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
57 1div1e1 11958 . . . . 5 (1 / 1) = 1
5856, 57eqtrdi 2793 . . . 4 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = 1)
598rpcnd 13079 . . . . . 6 (𝜑𝐴 ∈ ℂ)
6059div1d 12035 . . . . 5 (𝜑 → (𝐴 / 1) = 𝐴)
6160fveq2d 6910 . . . 4 (𝜑 → (log‘(𝐴 / 1)) = (log‘𝐴))
6258, 61oveq12d 7449 . . 3 (𝜑 → (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))) = (1 · (log‘𝐴)))
638relogcld 26665 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℝ)
6463recnd 11289 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
6564mullidd 11279 . . 3 (𝜑 → (1 · (log‘𝐴)) = (log‘𝐴))
6654, 62, 653eqtrrd 2782 . 2 (𝜑 → (log‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))))
67 fzfid 14014 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
6819adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
69 elfzelz 13564 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
7069adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
7115, 16, 17, 18, 68, 70dchrzrhcl 27289 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
72 fznnfl 13902 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
739, 72syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
7473simprbda 498 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
7574, 12syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
7675zred 12722 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
7776, 74nndivred 12320 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
7877recnd 11289 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
7971, 78mulcld 11281 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
8019ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
81 elfzelz 13564 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
8281adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
8315, 16, 17, 18, 80, 82dchrzrhcl 27289 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
84 elfznn 13593 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
8584nnrpd 13075 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
86 rpdivcl 13060 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
878, 85, 86syl2an 596 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
88 elfznn 13593 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
8988nnrpd 13075 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℝ+)
90 rpdivcl 13060 . . . . . . . . . 10 (((𝐴 / 𝑑) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9187, 89, 90syl2an 596 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9291relogcld 26665 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
9388adantl 481 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
9492, 93nndivred 12320 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
9594recnd 11289 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
9683, 95mulcld 11281 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
9767, 79, 96fsummulc2 15820 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
9871adantr 480 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9976adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
10099recnd 11289 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
10174nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
102101adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
103102rpcnne0d 13086 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
104 div12 11944 . . . . . . . 8 (((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (μ‘𝑑) ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10598, 100, 103, 104syl3anc 1373 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10692recnd 11289 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
10793nnrpd 13075 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
108107rpcnne0d 13086 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
109 div12 11944 . . . . . . . 8 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
11083, 106, 108, 109syl3anc 1373 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
111105, 110oveq12d 7449 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
112102rpcnd 13079 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
113102rpne0d 13082 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
11498, 112, 113divcld 12043 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11593nncnd 12282 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
11693nnne0d 12316 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
11783, 115, 116divcld 12043 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
118114, 117mulcld 11281 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
119100, 106, 118mulassd 11284 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
120100, 114, 106, 117mul4d 11473 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
12169ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
12215, 16, 17, 18, 80, 121, 82dchrzrhmul 27290 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
123122oveq1d 7446 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
124 divmuldiv 11967 . . . . . . . . . . . 12 ((((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (𝑋‘(𝐿𝑚)) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
12598, 83, 103, 108, 124syl22anc 839 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
126123, 125eqtr4d 2780 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
12759ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝐴 ∈ ℂ)
128 divdiv1 11978 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
129127, 103, 108, 128syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
130129eqcomd 2743 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / (𝑑 · 𝑚)) = ((𝐴 / 𝑑) / 𝑚))
131130fveq2d 6910 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / (𝑑 · 𝑚))) = (log‘((𝐴 / 𝑑) / 𝑚)))
132126, 131oveq12d 7449 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))))
133118, 106mulcomd 11282 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
134132, 133eqtrd 2777 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
135134oveq2d 7447 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
136119, 120, 1353eqtr4d 2787 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
137111, 136eqtrd 2777 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
138137sumeq2dv 15738 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
13997, 138eqtrd 2777 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
140139sumeq2dv 15738 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
14137, 66, 1403eqtr4d 2787 1 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  cle 11296   / cdiv 11920  cn 12266  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  cfl 13830  Σcsu 15722  cdvds 16290  Basecbs 17247  0gc0g 17484  ℤRHomczrh 21510  ℤ/nczn 21513  logclog 26596  μcmu 27138  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-qus 17554  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-mu 27144  df-dchr 27277
This theorem is referenced by:  dchrvmasum2if  27541
  Copyright terms: Public domain W3C validator