MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2lem Structured version   Visualization version   GIF version

Theorem dchrvmasum2lem 27423
Description: Give an expression for log𝑥 remarkably similar to Σ𝑛𝑥(𝑋(𝑛)Λ(𝑛) / 𝑛) given in dchrvmasumlem1 27422. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2lem (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Distinct variable groups:   1 ,𝑚   𝑚,𝑑,𝐴   𝑚,𝑁   𝜑,𝑑,𝑚   𝑚,𝑍   𝐷,𝑚   𝐿,𝑑,𝑚   𝑋,𝑑,𝑚
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2lem
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6831 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
2 id 22 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
31, 2oveq12d 7371 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
4 oveq2 7361 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝐴 / 𝑛) = (𝐴 / (𝑑 · 𝑚)))
54fveq2d 6830 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / (𝑑 · 𝑚))))
63, 5oveq12d 7371 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))))
76oveq2d 7369 . . 3 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
8 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
98rpred 12955 . . 3 (𝜑𝐴 ∈ ℝ)
10 elrabi 3645 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
1110ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
12 mucl 27067 . . . . . 6 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1311, 12syl 17 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
1413zcnd 12599 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
15 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
16 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
17 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
18 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
19 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
2019adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
21 elfzelz 13445 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
2221adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
2315, 16, 17, 18, 20, 22dchrzrhcl 27172 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
24 elfznn 13474 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
2625nncnd 12162 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
2725nnne0d 12196 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
2823, 26, 27divcld 11918 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
2924nnrpd 12953 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℝ+)
30 rpdivcl 12938 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℝ+)
318, 29, 30syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ+)
3231relogcld 26548 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℝ)
3332recnd 11162 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℂ)
3428, 33mulcld 11154 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3534adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3614, 35mulcld 11154 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) ∈ ℂ)
377, 9, 36dvdsflsumcom 27114 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
38 2fveq3 6831 . . . . . 6 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
39 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4038, 39oveq12d 7371 . . . . 5 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
41 oveq2 7361 . . . . . 6 (𝑛 = 1 → (𝐴 / 𝑛) = (𝐴 / 1))
4241fveq2d 6830 . . . . 5 (𝑛 = 1 → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / 1)))
4340, 42oveq12d 7371 . . . 4 (𝑛 = 1 → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
44 fzfid 13898 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
45 fz1ssnn 13476 . . . . 5 (1...(⌊‘𝐴)) ⊆ ℕ
4645a1i 11 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
47 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
48 flge1nn 13743 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
499, 47, 48syl2anc 584 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℕ)
50 nnuz 12796 . . . . . 6 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2838 . . . . 5 (𝜑 → (⌊‘𝐴) ∈ (ℤ‘1))
52 eluzfz1 13452 . . . . 5 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
5351, 52syl 17 . . . 4 (𝜑 → 1 ∈ (1...(⌊‘𝐴)))
5443, 44, 46, 53, 34musumsum 27118 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
5515, 16, 17, 18, 19dchrzrh1 27171 . . . . . 6 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
5655oveq1d 7368 . . . . 5 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
57 1div1e1 11833 . . . . 5 (1 / 1) = 1
5856, 57eqtrdi 2780 . . . 4 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = 1)
598rpcnd 12957 . . . . . 6 (𝜑𝐴 ∈ ℂ)
6059div1d 11910 . . . . 5 (𝜑 → (𝐴 / 1) = 𝐴)
6160fveq2d 6830 . . . 4 (𝜑 → (log‘(𝐴 / 1)) = (log‘𝐴))
6258, 61oveq12d 7371 . . 3 (𝜑 → (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))) = (1 · (log‘𝐴)))
638relogcld 26548 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℝ)
6463recnd 11162 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
6564mullidd 11152 . . 3 (𝜑 → (1 · (log‘𝐴)) = (log‘𝐴))
6654, 62, 653eqtrrd 2769 . 2 (𝜑 → (log‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))))
67 fzfid 13898 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
6819adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
69 elfzelz 13445 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
7069adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
7115, 16, 17, 18, 68, 70dchrzrhcl 27172 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
72 fznnfl 13784 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
739, 72syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
7473simprbda 498 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
7574, 12syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
7675zred 12598 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
7776, 74nndivred 12200 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
7877recnd 11162 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
7971, 78mulcld 11154 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
8019ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
81 elfzelz 13445 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
8281adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
8315, 16, 17, 18, 80, 82dchrzrhcl 27172 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
84 elfznn 13474 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
8584nnrpd 12953 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
86 rpdivcl 12938 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
878, 85, 86syl2an 596 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
88 elfznn 13474 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
8988nnrpd 12953 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℝ+)
90 rpdivcl 12938 . . . . . . . . . 10 (((𝐴 / 𝑑) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9187, 89, 90syl2an 596 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9291relogcld 26548 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
9388adantl 481 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
9492, 93nndivred 12200 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
9594recnd 11162 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
9683, 95mulcld 11154 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
9767, 79, 96fsummulc2 15709 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
9871adantr 480 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9976adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
10099recnd 11162 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
10174nnrpd 12953 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
102101adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
103102rpcnne0d 12964 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
104 div12 11819 . . . . . . . 8 (((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (μ‘𝑑) ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10598, 100, 103, 104syl3anc 1373 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10692recnd 11162 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
10793nnrpd 12953 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
108107rpcnne0d 12964 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
109 div12 11819 . . . . . . . 8 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
11083, 106, 108, 109syl3anc 1373 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
111105, 110oveq12d 7371 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
112102rpcnd 12957 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
113102rpne0d 12960 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
11498, 112, 113divcld 11918 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11593nncnd 12162 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
11693nnne0d 12196 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
11783, 115, 116divcld 11918 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
118114, 117mulcld 11154 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
119100, 106, 118mulassd 11157 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
120100, 114, 106, 117mul4d 11346 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
12169ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
12215, 16, 17, 18, 80, 121, 82dchrzrhmul 27173 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
123122oveq1d 7368 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
124 divmuldiv 11842 . . . . . . . . . . . 12 ((((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (𝑋‘(𝐿𝑚)) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
12598, 83, 103, 108, 124syl22anc 838 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
126123, 125eqtr4d 2767 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
12759ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝐴 ∈ ℂ)
128 divdiv1 11853 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
129127, 103, 108, 128syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
130129eqcomd 2735 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / (𝑑 · 𝑚)) = ((𝐴 / 𝑑) / 𝑚))
131130fveq2d 6830 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / (𝑑 · 𝑚))) = (log‘((𝐴 / 𝑑) / 𝑚)))
132126, 131oveq12d 7371 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))))
133118, 106mulcomd 11155 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
134132, 133eqtrd 2764 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
135134oveq2d 7369 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
136119, 120, 1353eqtr4d 2774 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
137111, 136eqtrd 2764 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
138137sumeq2dv 15627 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
13997, 138eqtrd 2764 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
140139sumeq2dv 15627 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
14137, 66, 1403eqtr4d 2774 1 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3396  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033  cle 11169   / cdiv 11795  cn 12146  cz 12489  cuz 12753  +crp 12911  ...cfz 13428  cfl 13712  Σcsu 15611  cdvds 16181  Basecbs 17138  0gc0g 17361  ℤRHomczrh 21424  ℤ/nczn 21427  logclog 26479  μcmu 27021  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-mu 27027  df-dchr 27160
This theorem is referenced by:  dchrvmasum2if  27424
  Copyright terms: Public domain W3C validator