MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2lem Structured version   Visualization version   GIF version

Theorem dchrvmasum2lem 27554
Description: Give an expression for log𝑥 remarkably similar to Σ𝑛𝑥(𝑋(𝑛)Λ(𝑛) / 𝑛) given in dchrvmasumlem1 27553. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2lem (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Distinct variable groups:   1 ,𝑚   𝑚,𝑑,𝐴   𝑚,𝑁   𝜑,𝑑,𝑚   𝑚,𝑍   𝐷,𝑚   𝐿,𝑑,𝑚   𝑋,𝑑,𝑚
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2lem
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6911 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
2 id 22 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
31, 2oveq12d 7448 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
4 oveq2 7438 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝐴 / 𝑛) = (𝐴 / (𝑑 · 𝑚)))
54fveq2d 6910 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / (𝑑 · 𝑚))))
63, 5oveq12d 7448 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))))
76oveq2d 7446 . . 3 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
8 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
98rpred 13074 . . 3 (𝜑𝐴 ∈ ℝ)
10 elrabi 3689 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
1110ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
12 mucl 27198 . . . . . 6 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1311, 12syl 17 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
1413zcnd 12720 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
15 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
16 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
17 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
18 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
19 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
2019adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
21 elfzelz 13560 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
2221adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
2315, 16, 17, 18, 20, 22dchrzrhcl 27303 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
24 elfznn 13589 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
2625nncnd 12279 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
2725nnne0d 12313 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
2823, 26, 27divcld 12040 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
2924nnrpd 13072 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℝ+)
30 rpdivcl 13057 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℝ+)
318, 29, 30syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ+)
3231relogcld 26679 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℝ)
3332recnd 11286 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑛)) ∈ ℂ)
3428, 33mulcld 11278 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3534adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) ∈ ℂ)
3614, 35mulcld 11278 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) ∈ ℂ)
377, 9, 36dvdsflsumcom 27245 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
38 2fveq3 6911 . . . . . 6 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
39 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4038, 39oveq12d 7448 . . . . 5 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
41 oveq2 7438 . . . . . 6 (𝑛 = 1 → (𝐴 / 𝑛) = (𝐴 / 1))
4241fveq2d 6910 . . . . 5 (𝑛 = 1 → (log‘(𝐴 / 𝑛)) = (log‘(𝐴 / 1)))
4340, 42oveq12d 7448 . . . 4 (𝑛 = 1 → (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
44 fzfid 14010 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
45 fz1ssnn 13591 . . . . 5 (1...(⌊‘𝐴)) ⊆ ℕ
4645a1i 11 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
47 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
48 flge1nn 13857 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
499, 47, 48syl2anc 584 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℕ)
50 nnuz 12918 . . . . . 6 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2848 . . . . 5 (𝜑 → (⌊‘𝐴) ∈ (ℤ‘1))
52 eluzfz1 13567 . . . . 5 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
5351, 52syl 17 . . . 4 (𝜑 → 1 ∈ (1...(⌊‘𝐴)))
5443, 44, 46, 53, 34musumsum 27249 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))) = (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))))
5515, 16, 17, 18, 19dchrzrh1 27302 . . . . . 6 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
5655oveq1d 7445 . . . . 5 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
57 1div1e1 11955 . . . . 5 (1 / 1) = 1
5856, 57eqtrdi 2790 . . . 4 (𝜑 → ((𝑋‘(𝐿‘1)) / 1) = 1)
598rpcnd 13076 . . . . . 6 (𝜑𝐴 ∈ ℂ)
6059div1d 12032 . . . . 5 (𝜑 → (𝐴 / 1) = 𝐴)
6160fveq2d 6910 . . . 4 (𝜑 → (log‘(𝐴 / 1)) = (log‘𝐴))
6258, 61oveq12d 7448 . . 3 (𝜑 → (((𝑋‘(𝐿‘1)) / 1) · (log‘(𝐴 / 1))) = (1 · (log‘𝐴)))
638relogcld 26679 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℝ)
6463recnd 11286 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
6564mullidd 11276 . . 3 (𝜑 → (1 · (log‘𝐴)) = (log‘𝐴))
6654, 62, 653eqtrrd 2779 . 2 (𝜑 → (log‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (((𝑋‘(𝐿𝑛)) / 𝑛) · (log‘(𝐴 / 𝑛)))))
67 fzfid 14010 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
6819adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
69 elfzelz 13560 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
7069adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
7115, 16, 17, 18, 68, 70dchrzrhcl 27303 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
72 fznnfl 13898 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
739, 72syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
7473simprbda 498 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
7574, 12syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
7675zred 12719 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
7776, 74nndivred 12317 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
7877recnd 11286 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
7971, 78mulcld 11278 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
8019ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
81 elfzelz 13560 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
8281adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
8315, 16, 17, 18, 80, 82dchrzrhcl 27303 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
84 elfznn 13589 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
8584nnrpd 13072 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
86 rpdivcl 13057 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
878, 85, 86syl2an 596 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
88 elfznn 13589 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
8988nnrpd 13072 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℝ+)
90 rpdivcl 13057 . . . . . . . . . 10 (((𝐴 / 𝑑) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9187, 89, 90syl2an 596 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
9291relogcld 26679 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
9388adantl 481 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
9492, 93nndivred 12317 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
9594recnd 11286 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
9683, 95mulcld 11278 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
9767, 79, 96fsummulc2 15816 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
9871adantr 480 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9976adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
10099recnd 11286 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
10174nnrpd 13072 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
102101adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
103102rpcnne0d 13083 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
104 div12 11941 . . . . . . . 8 (((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (μ‘𝑑) ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10598, 100, 103, 104syl3anc 1370 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) = ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)))
10692recnd 11286 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
10793nnrpd 13072 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
108107rpcnne0d 13083 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
109 div12 11941 . . . . . . . 8 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
11083, 106, 108, 109syl3anc 1370 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) = ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
111105, 110oveq12d 7448 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
112102rpcnd 13076 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
113102rpne0d 13079 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
11498, 112, 113divcld 12040 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11593nncnd 12279 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
11693nnne0d 12313 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
11783, 115, 116divcld 12040 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
118114, 117mulcld 11278 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
119100, 106, 118mulassd 11281 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
120100, 114, 106, 117mul4d 11470 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = (((μ‘𝑑) · (log‘((𝐴 / 𝑑) / 𝑚))) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
12169ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
12215, 16, 17, 18, 80, 121, 82dchrzrhmul 27304 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
123122oveq1d 7445 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
124 divmuldiv 11964 . . . . . . . . . . . 12 ((((𝑋‘(𝐿𝑑)) ∈ ℂ ∧ (𝑋‘(𝐿𝑚)) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
12598, 83, 103, 108, 124syl22anc 839 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
126123, 125eqtr4d 2777 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
12759ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝐴 ∈ ℂ)
128 divdiv1 11975 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
129127, 103, 108, 128syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) = (𝐴 / (𝑑 · 𝑚)))
130129eqcomd 2740 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / (𝑑 · 𝑚)) = ((𝐴 / 𝑑) / 𝑚))
131130fveq2d 6910 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / (𝑑 · 𝑚))) = (log‘((𝐴 / 𝑑) / 𝑚)))
132126, 131oveq12d 7448 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))))
133118, 106mulcomd 11279 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) · (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
134132, 133eqtrd 2774 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚)))) = ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
135134oveq2d 7446 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))) = ((μ‘𝑑) · ((log‘((𝐴 / 𝑑) / 𝑚)) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))))
136119, 120, 1353eqtr4d 2784 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((log‘((𝐴 / 𝑑) / 𝑚)) · ((𝑋‘(𝐿𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
137111, 136eqtrd 2774 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
138137sumeq2dv 15734 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
13997, 138eqtrd 2774 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
140139sumeq2dv 15734 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((μ‘𝑑) · (((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) · (log‘(𝐴 / (𝑑 · 𝑚))))))
14137, 66, 1403eqtr4d 2784 1 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  cle 11293   / cdiv 11917  cn 12263  cz 12610  cuz 12875  +crp 13031  ...cfz 13543  cfl 13826  Σcsu 15718  cdvds 16286  Basecbs 17244  0gc0g 17485  ℤRHomczrh 21527  ℤ/nczn 21530  logclog 26610  μcmu 27152  DChrcdchr 27290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-nsg 19154  df-eqg 19155  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-2idl 21277  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-zn 21534  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-mu 27158  df-dchr 27291
This theorem is referenced by:  dchrvmasum2if  27555
  Copyright terms: Public domain W3C validator