MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   GIF version

Theorem itg2mulc 24500
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulc.4 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
itg2mulc (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 484 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶(0[,)+∞))
3 itg2mulc.3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
43adantr 484 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ∈ ℝ)
5 itg2mulc.4 . . . . . . . 8 (𝜑𝐴 ∈ (0[,)+∞))
6 elrege0 12928 . . . . . . . 8 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
75, 6sylib 221 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
87simpld 498 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98anim1i 618 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 elrp 12474 . . . . 5 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
119, 10sylibr 237 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
122, 4, 11itg2mulclem 24499 . . 3 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
13 ge0mulcl 12935 . . . . . . . . 9 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
1413adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
15 fconst6g 6567 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
165, 15syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
17 reex 10706 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
19 inidm 4109 . . . . . . . 8 (ℝ ∩ ℝ) = ℝ
2014, 16, 1, 18, 18, 19off 7442 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
2120adantr 484 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
22 icossicc 12910 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
23 fss 6521 . . . . . . . . 9 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2420, 22, 23sylancl 589 . . . . . . . 8 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2524adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
268, 3remulcld 10749 . . . . . . . 8 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
2726adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ∈ ℝ)
28 itg2lecl 24491 . . . . . . 7 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ ∧ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹))) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
2925, 27, 12, 28syl3anc 1372 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
3011rpreccld 12524 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ+)
3121, 29, 30itg2mulclem 24499 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))) ≤ ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
322feqmptd 6737 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
33 rge0ssre 12930 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
34 ax-resscn 10672 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3533, 34sstri 3886 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℂ
36 fss 6521 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
371, 35, 36sylancl 589 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶ℂ)
3938ffvelrnda 6861 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
4039mulid2d 10737 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (1 · (𝐹𝑦)) = (𝐹𝑦))
4140mpteq2dva 5125 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4232, 41eqtr4d 2776 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
4317a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ℝ ∈ V)
44 1red 10720 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
4543, 30, 11ofc12 7452 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (ℝ × {((1 / 𝐴) · 𝐴)}))
46 fconstmpt 5585 . . . . . . . . . 10 (ℝ × {((1 / 𝐴) · 𝐴)}) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴))
4745, 46eqtrdi 2789 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)))
488recnd 10747 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4948adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
5011rpne0d 12519 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5149, 50recid2d 11490 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
5251mpteq2dv 5126 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)) = (𝑦 ∈ ℝ ↦ 1))
5347, 52eqtrd 2773 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ 1))
5443, 44, 39, 53, 32offval2 7444 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
5530rpcnd 12516 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
56 fconst6g 6567 . . . . . . . . 9 ((1 / 𝐴) ∈ ℂ → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
58 fconst6g 6567 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℝ × {𝐴}):ℝ⟶ℂ)
5949, 58syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {𝐴}):ℝ⟶ℂ)
60 mulass 10703 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6160adantl 485 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6243, 57, 59, 38, 61caofass 7461 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6342, 54, 623eqtr2d 2779 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6463fveq2d 6678 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) = (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))))
6529recnd 10747 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℂ)
6665, 49, 50divrec2d 11498 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴) = ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
6731, 64, 663brtr4d 5062 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴))
684, 29, 11lemuldiv2d 12564 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ↔ (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴)))
6967, 68mpbird 260 . . 3 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))
70 itg2cl 24485 . . . . . 6 (((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7124, 70syl 17 . . . . 5 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7226rexrd 10769 . . . . 5 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
73 xrletri3 12630 . . . . 5 (((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ* ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7471, 72, 73syl2anc 587 . . . 4 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7574adantr 484 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7612, 69, 75mpbir2and 713 . 2 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
7717a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ℝ ∈ V)
7837adantr 484 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐹:ℝ⟶ℂ)
798adantr 484 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ∈ ℝ)
80 0re 10721 . . . . . . 7 0 ∈ ℝ
8180a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 0 ∈ ℝ)
82 simplr 769 . . . . . . . 8 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → 0 = 𝐴)
8382oveq1d 7185 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = (𝐴 · 𝑥))
84 mul02 10896 . . . . . . . 8 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
8584adantl 485 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
8683, 85eqtr3d 2775 . . . . . 6 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = 0)
8777, 78, 79, 81, 86caofid2 7458 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
8887fveq2d 6678 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (∫2‘(ℝ × {0})))
89 itg20 24490 . . . 4 (∫2‘(ℝ × {0})) = 0
9088, 89eqtrdi 2789 . . 3 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = 0)
913adantr 484 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℝ)
9291recnd 10747 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℂ)
9392mul02d 10916 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = 0)
94 simpr 488 . . . 4 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
9594oveq1d 7185 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = (𝐴 · (∫2𝐹)))
9690, 93, 953eqtr2d 2779 . 2 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
977simprd 499 . . 3 (𝜑 → 0 ≤ 𝐴)
98 leloe 10805 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9980, 8, 98sylancr 590 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
10097, 99mpbid 235 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
10176, 96, 100mpjaodan 958 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3398  wss 3843  {csn 4516   class class class wbr 5030  cmpt 5110   × cxp 5523  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  cc 10613  cr 10614  0cc0 10615  1c1 10616   · cmul 10620  +∞cpnf 10750  *cxr 10752   < clt 10753  cle 10754   / cdiv 11375  +crp 12472  [,)cico 12823  [,]cicc 12824  2citg2 24368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xadd 12591  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-sum 15136  df-xmet 20210  df-met 20211  df-ovol 24216  df-vol 24217  df-mbf 24371  df-itg1 24372  df-itg2 24373  df-0p 24422
This theorem is referenced by:  iblmulc2  24583  itgmulc2lem1  24584  bddmulibl  24591  iblmulc2nc  35465  itgmulc2nclem1  35466
  Copyright terms: Public domain W3C validator