Step | Hyp | Ref
| Expression |
1 | | itg2mulc.2 |
. . . . 5
β’ (π β πΉ:ββΆ(0[,)+β)) |
2 | 1 | adantr 481 |
. . . 4
β’ ((π β§ 0 < π΄) β πΉ:ββΆ(0[,)+β)) |
3 | | itg2mulc.3 |
. . . . 5
β’ (π β
(β«2βπΉ)
β β) |
4 | 3 | adantr 481 |
. . . 4
β’ ((π β§ 0 < π΄) β (β«2βπΉ) β
β) |
5 | | itg2mulc.4 |
. . . . . . . 8
β’ (π β π΄ β (0[,)+β)) |
6 | | elrege0 13427 |
. . . . . . . 8
β’ (π΄ β (0[,)+β) β
(π΄ β β β§ 0
β€ π΄)) |
7 | 5, 6 | sylib 217 |
. . . . . . 7
β’ (π β (π΄ β β β§ 0 β€ π΄)) |
8 | 7 | simpld 495 |
. . . . . 6
β’ (π β π΄ β β) |
9 | 8 | anim1i 615 |
. . . . 5
β’ ((π β§ 0 < π΄) β (π΄ β β β§ 0 < π΄)) |
10 | | elrp 12972 |
. . . . 5
β’ (π΄ β β+
β (π΄ β β
β§ 0 < π΄)) |
11 | 9, 10 | sylibr 233 |
. . . 4
β’ ((π β§ 0 < π΄) β π΄ β
β+) |
12 | 2, 4, 11 | itg2mulclem 25255 |
. . 3
β’ ((π β§ 0 < π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ))) |
13 | | ge0mulcl 13434 |
. . . . . . . . 9
β’ ((π₯ β (0[,)+β) β§
π¦ β (0[,)+β))
β (π₯ Β· π¦) β
(0[,)+β)) |
14 | 13 | adantl 482 |
. . . . . . . 8
β’ ((π β§ (π₯ β (0[,)+β) β§ π¦ β (0[,)+β))) β
(π₯ Β· π¦) β
(0[,)+β)) |
15 | | fconst6g 6777 |
. . . . . . . . 9
β’ (π΄ β (0[,)+β) β
(β Γ {π΄}):ββΆ(0[,)+β)) |
16 | 5, 15 | syl 17 |
. . . . . . . 8
β’ (π β (β Γ {π΄}):ββΆ(0[,)+β)) |
17 | | reex 11197 |
. . . . . . . . 9
β’ β
β V |
18 | 17 | a1i 11 |
. . . . . . . 8
β’ (π β β β
V) |
19 | | inidm 4217 |
. . . . . . . 8
β’ (β
β© β) = β |
20 | 14, 16, 1, 18, 18, 19 | off 7684 |
. . . . . . 7
β’ (π β ((β Γ {π΄}) βf Β·
πΉ):ββΆ(0[,)+β)) |
21 | 20 | adantr 481 |
. . . . . 6
β’ ((π β§ 0 < π΄) β ((β Γ {π΄}) βf Β·
πΉ):ββΆ(0[,)+β)) |
22 | | icossicc 13409 |
. . . . . . . . 9
β’
(0[,)+β) β (0[,]+β) |
23 | | fss 6731 |
. . . . . . . . 9
β’
((((β Γ {π΄}) βf Β· πΉ):ββΆ(0[,)+β)
β§ (0[,)+β) β (0[,]+β)) β ((β Γ {π΄}) βf Β·
πΉ):ββΆ(0[,]+β)) |
24 | 20, 22, 23 | sylancl 586 |
. . . . . . . 8
β’ (π β ((β Γ {π΄}) βf Β·
πΉ):ββΆ(0[,]+β)) |
25 | 24 | adantr 481 |
. . . . . . 7
β’ ((π β§ 0 < π΄) β ((β Γ {π΄}) βf Β·
πΉ):ββΆ(0[,]+β)) |
26 | 8, 3 | remulcld 11240 |
. . . . . . . 8
β’ (π β (π΄ Β· (β«2βπΉ)) β
β) |
27 | 26 | adantr 481 |
. . . . . . 7
β’ ((π β§ 0 < π΄) β (π΄ Β· (β«2βπΉ)) β
β) |
28 | | itg2lecl 25247 |
. . . . . . 7
β’
((((β Γ {π΄}) βf Β· πΉ):ββΆ(0[,]+β)
β§ (π΄ Β·
(β«2βπΉ)) β β β§
(β«2β((β Γ {π΄}) βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ))) β
(β«2β((β Γ {π΄}) βf Β· πΉ)) β
β) |
29 | 25, 27, 12, 28 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ 0 < π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) β β) |
30 | 11 | rpreccld 13022 |
. . . . . 6
β’ ((π β§ 0 < π΄) β (1 / π΄) β
β+) |
31 | 21, 29, 30 | itg2mulclem 25255 |
. . . . 5
β’ ((π β§ 0 < π΄) β (β«2β((β
Γ {(1 / π΄)})
βf Β· ((β Γ {π΄}) βf Β· πΉ))) β€ ((1 / π΄) Β·
(β«2β((β Γ {π΄}) βf Β· πΉ)))) |
32 | 2 | feqmptd 6957 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β πΉ = (π¦ β β β¦ (πΉβπ¦))) |
33 | | rge0ssre 13429 |
. . . . . . . . . . . . . 14
β’
(0[,)+β) β β |
34 | | ax-resscn 11163 |
. . . . . . . . . . . . . 14
β’ β
β β |
35 | 33, 34 | sstri 3990 |
. . . . . . . . . . . . 13
β’
(0[,)+β) β β |
36 | | fss 6731 |
. . . . . . . . . . . . 13
β’ ((πΉ:ββΆ(0[,)+β)
β§ (0[,)+β) β β) β πΉ:ββΆβ) |
37 | 1, 35, 36 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β πΉ:ββΆβ) |
38 | 37 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ 0 < π΄) β πΉ:ββΆβ) |
39 | 38 | ffvelcdmda 7083 |
. . . . . . . . . 10
β’ (((π β§ 0 < π΄) β§ π¦ β β) β (πΉβπ¦) β β) |
40 | 39 | mullidd 11228 |
. . . . . . . . 9
β’ (((π β§ 0 < π΄) β§ π¦ β β) β (1 Β· (πΉβπ¦)) = (πΉβπ¦)) |
41 | 40 | mpteq2dva 5247 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β (π¦ β β β¦ (1 Β· (πΉβπ¦))) = (π¦ β β β¦ (πΉβπ¦))) |
42 | 32, 41 | eqtr4d 2775 |
. . . . . . 7
β’ ((π β§ 0 < π΄) β πΉ = (π¦ β β β¦ (1 Β· (πΉβπ¦)))) |
43 | 17 | a1i 11 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β β β V) |
44 | | 1red 11211 |
. . . . . . . 8
β’ (((π β§ 0 < π΄) β§ π¦ β β) β 1 β
β) |
45 | 43, 30, 11 | ofc12 7694 |
. . . . . . . . . 10
β’ ((π β§ 0 < π΄) β ((β Γ {(1 / π΄)}) βf Β·
(β Γ {π΄})) =
(β Γ {((1 / π΄)
Β· π΄)})) |
46 | | fconstmpt 5736 |
. . . . . . . . . 10
β’ (β
Γ {((1 / π΄) Β·
π΄)}) = (π¦ β β β¦ ((1 / π΄) Β· π΄)) |
47 | 45, 46 | eqtrdi 2788 |
. . . . . . . . 9
β’ ((π β§ 0 < π΄) β ((β Γ {(1 / π΄)}) βf Β·
(β Γ {π΄})) =
(π¦ β β β¦
((1 / π΄) Β· π΄))) |
48 | 8 | recnd 11238 |
. . . . . . . . . . . 12
β’ (π β π΄ β β) |
49 | 48 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ 0 < π΄) β π΄ β β) |
50 | 11 | rpne0d 13017 |
. . . . . . . . . . 11
β’ ((π β§ 0 < π΄) β π΄ β 0) |
51 | 49, 50 | recid2d 11982 |
. . . . . . . . . 10
β’ ((π β§ 0 < π΄) β ((1 / π΄) Β· π΄) = 1) |
52 | 51 | mpteq2dv 5249 |
. . . . . . . . 9
β’ ((π β§ 0 < π΄) β (π¦ β β β¦ ((1 / π΄) Β· π΄)) = (π¦ β β β¦ 1)) |
53 | 47, 52 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β ((β Γ {(1 / π΄)}) βf Β·
(β Γ {π΄})) =
(π¦ β β β¦
1)) |
54 | 43, 44, 39, 53, 32 | offval2 7686 |
. . . . . . 7
β’ ((π β§ 0 < π΄) β (((β Γ {(1 / π΄)}) βf Β·
(β Γ {π΄}))
βf Β· πΉ) = (π¦ β β β¦ (1 Β· (πΉβπ¦)))) |
55 | 30 | rpcnd 13014 |
. . . . . . . . 9
β’ ((π β§ 0 < π΄) β (1 / π΄) β β) |
56 | | fconst6g 6777 |
. . . . . . . . 9
β’ ((1 /
π΄) β β β
(β Γ {(1 / π΄)}):ββΆβ) |
57 | 55, 56 | syl 17 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β (β Γ {(1 / π΄)}):ββΆβ) |
58 | | fconst6g 6777 |
. . . . . . . . 9
β’ (π΄ β β β (β
Γ {π΄}):ββΆβ) |
59 | 49, 58 | syl 17 |
. . . . . . . 8
β’ ((π β§ 0 < π΄) β (β Γ {π΄}):ββΆβ) |
60 | | mulass 11194 |
. . . . . . . . 9
β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β ((π₯ Β· π¦) Β· π§) = (π₯ Β· (π¦ Β· π§))) |
61 | 60 | adantl 482 |
. . . . . . . 8
β’ (((π β§ 0 < π΄) β§ (π₯ β β β§ π¦ β β β§ π§ β β)) β ((π₯ Β· π¦) Β· π§) = (π₯ Β· (π¦ Β· π§))) |
62 | 43, 57, 59, 38, 61 | caofass 7703 |
. . . . . . 7
β’ ((π β§ 0 < π΄) β (((β Γ {(1 / π΄)}) βf Β·
(β Γ {π΄}))
βf Β· πΉ) = ((β Γ {(1 / π΄)}) βf Β·
((β Γ {π΄})
βf Β· πΉ))) |
63 | 42, 54, 62 | 3eqtr2d 2778 |
. . . . . 6
β’ ((π β§ 0 < π΄) β πΉ = ((β Γ {(1 / π΄)}) βf Β· ((β
Γ {π΄})
βf Β· πΉ))) |
64 | 63 | fveq2d 6892 |
. . . . 5
β’ ((π β§ 0 < π΄) β (β«2βπΉ) =
(β«2β((β Γ {(1 / π΄)}) βf Β· ((β
Γ {π΄})
βf Β· πΉ)))) |
65 | 29 | recnd 11238 |
. . . . . 6
β’ ((π β§ 0 < π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) β β) |
66 | 65, 49, 50 | divrec2d 11990 |
. . . . 5
β’ ((π β§ 0 < π΄) β ((β«2β((β
Γ {π΄})
βf Β· πΉ)) / π΄) = ((1 / π΄) Β·
(β«2β((β Γ {π΄}) βf Β· πΉ)))) |
67 | 31, 64, 66 | 3brtr4d 5179 |
. . . 4
β’ ((π β§ 0 < π΄) β (β«2βπΉ) β€
((β«2β((β Γ {π΄}) βf Β· πΉ)) / π΄)) |
68 | 4, 29, 11 | lemuldiv2d 13062 |
. . . 4
β’ ((π β§ 0 < π΄) β ((π΄ Β· (β«2βπΉ)) β€
(β«2β((β Γ {π΄}) βf Β· πΉ)) β
(β«2βπΉ)
β€ ((β«2β((β Γ {π΄}) βf Β· πΉ)) / π΄))) |
69 | 67, 68 | mpbird 256 |
. . 3
β’ ((π β§ 0 < π΄) β (π΄ Β· (β«2βπΉ)) β€
(β«2β((β Γ {π΄}) βf Β· πΉ))) |
70 | | itg2cl 25241 |
. . . . . 6
β’
(((β Γ {π΄}) βf Β· πΉ):ββΆ(0[,]+β)
β (β«2β((β Γ {π΄}) βf Β· πΉ)) β
β*) |
71 | 24, 70 | syl 17 |
. . . . 5
β’ (π β
(β«2β((β Γ {π΄}) βf Β· πΉ)) β
β*) |
72 | 26 | rexrd 11260 |
. . . . 5
β’ (π β (π΄ Β· (β«2βπΉ)) β
β*) |
73 | | xrletri3 13129 |
. . . . 5
β’
(((β«2β((β Γ {π΄}) βf Β· πΉ)) β β*
β§ (π΄ Β·
(β«2βπΉ)) β β*) β
((β«2β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«2βπΉ)) β
((β«2β((β Γ {π΄}) βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ)) β§ (π΄ Β· (β«2βπΉ)) β€
(β«2β((β Γ {π΄}) βf Β· πΉ))))) |
74 | 71, 72, 73 | syl2anc 584 |
. . . 4
β’ (π β
((β«2β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«2βπΉ)) β
((β«2β((β Γ {π΄}) βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ)) β§ (π΄ Β· (β«2βπΉ)) β€
(β«2β((β Γ {π΄}) βf Β· πΉ))))) |
75 | 74 | adantr 481 |
. . 3
β’ ((π β§ 0 < π΄) β ((β«2β((β
Γ {π΄})
βf Β· πΉ)) = (π΄ Β· (β«2βπΉ)) β
((β«2β((β Γ {π΄}) βf Β· πΉ)) β€ (π΄ Β· (β«2βπΉ)) β§ (π΄ Β· (β«2βπΉ)) β€
(β«2β((β Γ {π΄}) βf Β· πΉ))))) |
76 | 12, 69, 75 | mpbir2and 711 |
. 2
β’ ((π β§ 0 < π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) = (π΄ Β· (β«2βπΉ))) |
77 | 17 | a1i 11 |
. . . . . 6
β’ ((π β§ 0 = π΄) β β β V) |
78 | 37 | adantr 481 |
. . . . . 6
β’ ((π β§ 0 = π΄) β πΉ:ββΆβ) |
79 | 8 | adantr 481 |
. . . . . 6
β’ ((π β§ 0 = π΄) β π΄ β β) |
80 | | 0re 11212 |
. . . . . . 7
β’ 0 β
β |
81 | 80 | a1i 11 |
. . . . . 6
β’ ((π β§ 0 = π΄) β 0 β β) |
82 | | simplr 767 |
. . . . . . . 8
β’ (((π β§ 0 = π΄) β§ π₯ β β) β 0 = π΄) |
83 | 82 | oveq1d 7420 |
. . . . . . 7
β’ (((π β§ 0 = π΄) β§ π₯ β β) β (0 Β· π₯) = (π΄ Β· π₯)) |
84 | | mul02 11388 |
. . . . . . . 8
β’ (π₯ β β β (0
Β· π₯) =
0) |
85 | 84 | adantl 482 |
. . . . . . 7
β’ (((π β§ 0 = π΄) β§ π₯ β β) β (0 Β· π₯) = 0) |
86 | 83, 85 | eqtr3d 2774 |
. . . . . 6
β’ (((π β§ 0 = π΄) β§ π₯ β β) β (π΄ Β· π₯) = 0) |
87 | 77, 78, 79, 81, 86 | caofid2 7700 |
. . . . 5
β’ ((π β§ 0 = π΄) β ((β Γ {π΄}) βf Β·
πΉ) = (β Γ
{0})) |
88 | 87 | fveq2d 6892 |
. . . 4
β’ ((π β§ 0 = π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) = (β«2β(β
Γ {0}))) |
89 | | itg20 25246 |
. . . 4
β’
(β«2β(β Γ {0})) = 0 |
90 | 88, 89 | eqtrdi 2788 |
. . 3
β’ ((π β§ 0 = π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) = 0) |
91 | 3 | adantr 481 |
. . . . 5
β’ ((π β§ 0 = π΄) β (β«2βπΉ) β
β) |
92 | 91 | recnd 11238 |
. . . 4
β’ ((π β§ 0 = π΄) β (β«2βπΉ) β
β) |
93 | 92 | mul02d 11408 |
. . 3
β’ ((π β§ 0 = π΄) β (0 Β·
(β«2βπΉ)) = 0) |
94 | | simpr 485 |
. . . 4
β’ ((π β§ 0 = π΄) β 0 = π΄) |
95 | 94 | oveq1d 7420 |
. . 3
β’ ((π β§ 0 = π΄) β (0 Β·
(β«2βπΉ)) = (π΄ Β· (β«2βπΉ))) |
96 | 90, 93, 95 | 3eqtr2d 2778 |
. 2
β’ ((π β§ 0 = π΄) β (β«2β((β
Γ {π΄})
βf Β· πΉ)) = (π΄ Β· (β«2βπΉ))) |
97 | 7 | simprd 496 |
. . 3
β’ (π β 0 β€ π΄) |
98 | | leloe 11296 |
. . . 4
β’ ((0
β β β§ π΄
β β) β (0 β€ π΄ β (0 < π΄ β¨ 0 = π΄))) |
99 | 80, 8, 98 | sylancr 587 |
. . 3
β’ (π β (0 β€ π΄ β (0 < π΄ β¨ 0 = π΄))) |
100 | 97, 99 | mpbid 231 |
. 2
β’ (π β (0 < π΄ β¨ 0 = π΄)) |
101 | 76, 96, 100 | mpjaodan 957 |
1
β’ (π β
(β«2β((β Γ {π΄}) βf Β· πΉ)) = (π΄ Β· (β«2βπΉ))) |