MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   GIF version

Theorem itg2mulc 25796
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulc.4 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
itg2mulc (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶(0[,)+∞))
3 itg2mulc.3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ∈ ℝ)
5 itg2mulc.4 . . . . . . . 8 (𝜑𝐴 ∈ (0[,)+∞))
6 elrege0 13490 . . . . . . . 8 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
75, 6sylib 218 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
87simpld 494 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98anim1i 615 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 elrp 13033 . . . . 5 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
119, 10sylibr 234 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
122, 4, 11itg2mulclem 25795 . . 3 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
13 ge0mulcl 13497 . . . . . . . . 9 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
15 fconst6g 6797 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
165, 15syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
17 reex 11243 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
19 inidm 4234 . . . . . . . 8 (ℝ ∩ ℝ) = ℝ
2014, 16, 1, 18, 18, 19off 7714 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
2120adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
22 icossicc 13472 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
23 fss 6752 . . . . . . . . 9 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2420, 22, 23sylancl 586 . . . . . . . 8 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2524adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
268, 3remulcld 11288 . . . . . . . 8 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
2726adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ∈ ℝ)
28 itg2lecl 25787 . . . . . . 7 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ ∧ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹))) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
2925, 27, 12, 28syl3anc 1370 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
3011rpreccld 13084 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ+)
3121, 29, 30itg2mulclem 25795 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))) ≤ ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
322feqmptd 6976 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
33 rge0ssre 13492 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
34 ax-resscn 11209 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3533, 34sstri 4004 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℂ
36 fss 6752 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
371, 35, 36sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶ℂ)
3938ffvelcdmda 7103 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
4039mullidd 11276 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (1 · (𝐹𝑦)) = (𝐹𝑦))
4140mpteq2dva 5247 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4232, 41eqtr4d 2777 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
4317a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ℝ ∈ V)
44 1red 11259 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
4543, 30, 11ofc12 7726 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (ℝ × {((1 / 𝐴) · 𝐴)}))
46 fconstmpt 5750 . . . . . . . . . 10 (ℝ × {((1 / 𝐴) · 𝐴)}) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴))
4745, 46eqtrdi 2790 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)))
488recnd 11286 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4948adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
5011rpne0d 13079 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5149, 50recid2d 12036 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
5251mpteq2dv 5249 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)) = (𝑦 ∈ ℝ ↦ 1))
5347, 52eqtrd 2774 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ 1))
5443, 44, 39, 53, 32offval2 7716 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
5530rpcnd 13076 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
56 fconst6g 6797 . . . . . . . . 9 ((1 / 𝐴) ∈ ℂ → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
58 fconst6g 6797 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℝ × {𝐴}):ℝ⟶ℂ)
5949, 58syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {𝐴}):ℝ⟶ℂ)
60 mulass 11240 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6160adantl 481 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6243, 57, 59, 38, 61caofass 7735 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6342, 54, 623eqtr2d 2780 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6463fveq2d 6910 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) = (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))))
6529recnd 11286 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℂ)
6665, 49, 50divrec2d 12044 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴) = ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
6731, 64, 663brtr4d 5179 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴))
684, 29, 11lemuldiv2d 13124 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ↔ (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴)))
6967, 68mpbird 257 . . 3 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))
70 itg2cl 25781 . . . . . 6 (((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7124, 70syl 17 . . . . 5 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7226rexrd 11308 . . . . 5 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
73 xrletri3 13192 . . . . 5 (((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ* ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7471, 72, 73syl2anc 584 . . . 4 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7574adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7612, 69, 75mpbir2and 713 . 2 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
7717a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ℝ ∈ V)
7837adantr 480 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐹:ℝ⟶ℂ)
798adantr 480 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ∈ ℝ)
80 0re 11260 . . . . . . 7 0 ∈ ℝ
8180a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 0 ∈ ℝ)
82 simplr 769 . . . . . . . 8 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → 0 = 𝐴)
8382oveq1d 7445 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = (𝐴 · 𝑥))
84 mul02 11436 . . . . . . . 8 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
8584adantl 481 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
8683, 85eqtr3d 2776 . . . . . 6 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = 0)
8777, 78, 79, 81, 86caofid2 7732 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
8887fveq2d 6910 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (∫2‘(ℝ × {0})))
89 itg20 25786 . . . 4 (∫2‘(ℝ × {0})) = 0
9088, 89eqtrdi 2790 . . 3 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = 0)
913adantr 480 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℝ)
9291recnd 11286 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℂ)
9392mul02d 11456 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = 0)
94 simpr 484 . . . 4 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
9594oveq1d 7445 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = (𝐴 · (∫2𝐹)))
9690, 93, 953eqtr2d 2780 . 2 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
977simprd 495 . . 3 (𝜑 → 0 ≤ 𝐴)
98 leloe 11344 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9980, 8, 98sylancr 587 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
10097, 99mpbid 232 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
10176, 96, 100mpjaodan 960 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  {csn 4630   class class class wbr 5147  cmpt 5230   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293   / cdiv 11917  +crp 13031  [,)cico 13385  [,]cicc 13386  2citg2 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xadd 13152  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-xmet 21374  df-met 21375  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-0p 25718
This theorem is referenced by:  iblmulc2  25880  itgmulc2lem1  25881  bddmulibl  25888  iblmulc2nc  37671  itgmulc2nclem1  37672
  Copyright terms: Public domain W3C validator