MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   GIF version

Theorem itg2mulc 25802
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulc.4 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
itg2mulc (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶(0[,)+∞))
3 itg2mulc.3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ∈ ℝ)
5 itg2mulc.4 . . . . . . . 8 (𝜑𝐴 ∈ (0[,)+∞))
6 elrege0 13514 . . . . . . . 8 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
75, 6sylib 218 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
87simpld 494 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98anim1i 614 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 elrp 13059 . . . . 5 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
119, 10sylibr 234 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
122, 4, 11itg2mulclem 25801 . . 3 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
13 ge0mulcl 13521 . . . . . . . . 9 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
15 fconst6g 6810 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
165, 15syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
17 reex 11275 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
19 inidm 4248 . . . . . . . 8 (ℝ ∩ ℝ) = ℝ
2014, 16, 1, 18, 18, 19off 7732 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
2120adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
22 icossicc 13496 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
23 fss 6763 . . . . . . . . 9 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2420, 22, 23sylancl 585 . . . . . . . 8 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
2524adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
268, 3remulcld 11320 . . . . . . . 8 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
2726adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ∈ ℝ)
28 itg2lecl 25793 . . . . . . 7 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ ∧ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹))) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
2925, 27, 12, 28syl3anc 1371 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ)
3011rpreccld 13109 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ+)
3121, 29, 30itg2mulclem 25801 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))) ≤ ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
322feqmptd 6990 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
33 rge0ssre 13516 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
34 ax-resscn 11241 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3533, 34sstri 4018 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℂ
36 fss 6763 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
371, 35, 36sylancl 585 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶ℂ)
3938ffvelcdmda 7118 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
4039mullidd 11308 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (1 · (𝐹𝑦)) = (𝐹𝑦))
4140mpteq2dva 5266 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4232, 41eqtr4d 2783 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
4317a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ℝ ∈ V)
44 1red 11291 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
4543, 30, 11ofc12 7743 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (ℝ × {((1 / 𝐴) · 𝐴)}))
46 fconstmpt 5762 . . . . . . . . . 10 (ℝ × {((1 / 𝐴) · 𝐴)}) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴))
4745, 46eqtrdi 2796 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)))
488recnd 11318 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4948adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
5011rpne0d 13104 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5149, 50recid2d 12066 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
5251mpteq2dv 5268 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)) = (𝑦 ∈ ℝ ↦ 1))
5347, 52eqtrd 2780 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ 1))
5443, 44, 39, 53, 32offval2 7734 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
5530rpcnd 13101 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
56 fconst6g 6810 . . . . . . . . 9 ((1 / 𝐴) ∈ ℂ → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
58 fconst6g 6810 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℝ × {𝐴}):ℝ⟶ℂ)
5949, 58syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {𝐴}):ℝ⟶ℂ)
60 mulass 11272 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6160adantl 481 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6243, 57, 59, 38, 61caofass 7752 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘f · (ℝ × {𝐴})) ∘f · 𝐹) = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6342, 54, 623eqtr2d 2786 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = ((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹)))
6463fveq2d 6924 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) = (∫2‘((ℝ × {(1 / 𝐴)}) ∘f · ((ℝ × {𝐴}) ∘f · 𝐹))))
6529recnd 11318 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℂ)
6665, 49, 50divrec2d 12074 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴) = ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘f · 𝐹))))
6731, 64, 663brtr4d 5198 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴))
684, 29, 11lemuldiv2d 13149 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ↔ (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) / 𝐴)))
6967, 68mpbird 257 . . 3 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))
70 itg2cl 25787 . . . . . 6 (((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7124, 70syl 17 . . . . 5 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ*)
7226rexrd 11340 . . . . 5 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
73 xrletri3 13216 . . . . 5 (((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ∈ ℝ* ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7471, 72, 73syl2anc 583 . . . 4 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7574adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)))))
7612, 69, 75mpbir2and 712 . 2 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
7717a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ℝ ∈ V)
7837adantr 480 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐹:ℝ⟶ℂ)
798adantr 480 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ∈ ℝ)
80 0re 11292 . . . . . . 7 0 ∈ ℝ
8180a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 0 ∈ ℝ)
82 simplr 768 . . . . . . . 8 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → 0 = 𝐴)
8382oveq1d 7463 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = (𝐴 · 𝑥))
84 mul02 11468 . . . . . . . 8 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
8584adantl 481 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
8683, 85eqtr3d 2782 . . . . . 6 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = 0)
8777, 78, 79, 81, 86caofid2 7749 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
8887fveq2d 6924 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (∫2‘(ℝ × {0})))
89 itg20 25792 . . . 4 (∫2‘(ℝ × {0})) = 0
9088, 89eqtrdi 2796 . . 3 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = 0)
913adantr 480 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℝ)
9291recnd 11318 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℂ)
9392mul02d 11488 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = 0)
94 simpr 484 . . . 4 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
9594oveq1d 7463 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = (𝐴 · (∫2𝐹)))
9690, 93, 953eqtr2d 2786 . 2 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
977simprd 495 . . 3 (𝜑 → 0 ≤ 𝐴)
98 leloe 11376 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9980, 8, 98sylancr 586 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
10097, 99mpbid 232 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
10176, 96, 100mpjaodan 959 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  +crp 13057  [,)cico 13409  [,]cicc 13410  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-0p 25724
This theorem is referenced by:  iblmulc2  25886  itgmulc2lem1  25887  bddmulibl  25894  iblmulc2nc  37645  itgmulc2nclem1  37646
  Copyright terms: Public domain W3C validator