MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2div Structured version   Visualization version   GIF version

Theorem clim2div 15926
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1 𝑍 = (ℤ𝑀)
clim2div.2 (𝜑𝑁𝑍)
clim2div.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2div.4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
clim2div.5 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Assertion
Ref Expression
clim2div (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem clim2div
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2div.2 . . . . 5 (𝜑𝑁𝑍)
3 eluzelz 12889 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 clim2div.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleq2s 2858 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
62, 5syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
76peano2zd 12727 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2div.4 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
9 eluzel2 12884 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109, 4eleq2s 2858 . . . . . . 7 (𝑁𝑍𝑀 ∈ ℤ)
112, 10syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
12 clim2div.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
134, 11, 12prodf 15924 . . . . 5 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 2ffvelcdmd 7104 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 clim2div.5 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
1614, 15reccld 12037 . . 3 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ)
17 seqex 14045 . . . 4 seq(𝑁 + 1)( · , 𝐹) ∈ V
1817a1i 11 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V)
192, 4eleqtrdi 2850 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
20 peano2uz 12944 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2221, 4eleqtrrdi 2851 . . . . 5 (𝜑 → (𝑁 + 1) ∈ 𝑍)
234uztrn2 12898 . . . . 5 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2422, 23sylan 580 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2513ffvelcdmda 7103 . . . 4 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
2624, 25syldan 591 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
27 mulcl 11240 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2827adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
29 mulass 11244 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
3029adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
31 simpr 484 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
3219adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
33 elfzuz 13561 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3433, 4eleqtrrdi 2851 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3534, 12sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3635adantlr 715 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3728, 30, 31, 32, 36seqsplit 14077 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)))
3837eqcomd 2742 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))
3914adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
404uztrn2 12898 . . . . . . . . . 10 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4122, 40sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4241, 12syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
431, 7, 42prodf 15924 . . . . . . 7 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
4443ffvelcdmda 7103 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ)
4515adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
4626, 39, 44, 45divmuld 12066 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)))
4738, 46mpbird 257 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗))
4826, 39, 45divrec2d 12048 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
4947, 48eqtr3d 2778 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
501, 7, 8, 16, 18, 26, 49climmulc2 15674 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
51 climcl 15536 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝐴𝐴 ∈ ℂ)
528, 51syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
5352, 14, 15divrec2d 12048 . 2 (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
5450, 53breqtrrd 5170 1 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   / cdiv 11921  cz 12615  cuz 12879  ...cfz 13548  seqcseq 14043  cli 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525
This theorem is referenced by:  ntrivcvgtail  15937
  Copyright terms: Public domain W3C validator