MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2div Structured version   Visualization version   GIF version

Theorem clim2div 15937
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1 𝑍 = (ℤ𝑀)
clim2div.2 (𝜑𝑁𝑍)
clim2div.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2div.4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
clim2div.5 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Assertion
Ref Expression
clim2div (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem clim2div
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2div.2 . . . . 5 (𝜑𝑁𝑍)
3 eluzelz 12913 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 clim2div.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleq2s 2862 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
62, 5syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
76peano2zd 12750 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2div.4 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
9 eluzel2 12908 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109, 4eleq2s 2862 . . . . . . 7 (𝑁𝑍𝑀 ∈ ℤ)
112, 10syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
12 clim2div.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
134, 11, 12prodf 15935 . . . . 5 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 2ffvelcdmd 7119 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 clim2div.5 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
1614, 15reccld 12063 . . 3 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ)
17 seqex 14054 . . . 4 seq(𝑁 + 1)( · , 𝐹) ∈ V
1817a1i 11 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V)
192, 4eleqtrdi 2854 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
20 peano2uz 12966 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2221, 4eleqtrrdi 2855 . . . . 5 (𝜑 → (𝑁 + 1) ∈ 𝑍)
234uztrn2 12922 . . . . 5 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2422, 23sylan 579 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2513ffvelcdmda 7118 . . . 4 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
2624, 25syldan 590 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
27 mulcl 11268 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2827adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
29 mulass 11272 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
3029adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
31 simpr 484 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
3219adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
33 elfzuz 13580 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3433, 4eleqtrrdi 2855 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3534, 12sylan2 592 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3635adantlr 714 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3728, 30, 31, 32, 36seqsplit 14086 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)))
3837eqcomd 2746 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))
3914adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
404uztrn2 12922 . . . . . . . . . 10 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4122, 40sylan 579 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4241, 12syldan 590 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
431, 7, 42prodf 15935 . . . . . . 7 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
4443ffvelcdmda 7118 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ)
4515adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
4626, 39, 44, 45divmuld 12092 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)))
4738, 46mpbird 257 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗))
4826, 39, 45divrec2d 12074 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
4947, 48eqtr3d 2782 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
501, 7, 8, 16, 18, 26, 49climmulc2 15683 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
51 climcl 15545 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝐴𝐴 ∈ ℂ)
528, 51syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
5352, 14, 15divrec2d 12074 . 2 (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
5450, 53breqtrrd 5194 1 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   / cdiv 11947  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  ntrivcvgtail  15948
  Copyright terms: Public domain W3C validator