MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2div Structured version   Visualization version   GIF version

Theorem clim2div 15831
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1 𝑍 = (ℤ𝑀)
clim2div.2 (𝜑𝑁𝑍)
clim2div.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2div.4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
clim2div.5 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Assertion
Ref Expression
clim2div (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem clim2div
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2div.2 . . . . 5 (𝜑𝑁𝑍)
3 eluzelz 12828 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 clim2div.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleq2s 2852 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
62, 5syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
76peano2zd 12665 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2div.4 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
9 eluzel2 12823 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109, 4eleq2s 2852 . . . . . . 7 (𝑁𝑍𝑀 ∈ ℤ)
112, 10syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
12 clim2div.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
134, 11, 12prodf 15829 . . . . 5 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 2ffvelcdmd 7083 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 clim2div.5 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
1614, 15reccld 11979 . . 3 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ)
17 seqex 13964 . . . 4 seq(𝑁 + 1)( · , 𝐹) ∈ V
1817a1i 11 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V)
192, 4eleqtrdi 2844 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
20 peano2uz 12881 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2221, 4eleqtrrdi 2845 . . . . 5 (𝜑 → (𝑁 + 1) ∈ 𝑍)
234uztrn2 12837 . . . . 5 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2422, 23sylan 581 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2513ffvelcdmda 7082 . . . 4 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
2624, 25syldan 592 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
27 mulcl 11190 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2827adantl 483 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
29 mulass 11194 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
3029adantl 483 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
31 simpr 486 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
3219adantr 482 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
33 elfzuz 13493 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3433, 4eleqtrrdi 2845 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3534, 12sylan2 594 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3635adantlr 714 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3728, 30, 31, 32, 36seqsplit 13997 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)))
3837eqcomd 2739 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))
3914adantr 482 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
404uztrn2 12837 . . . . . . . . . 10 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4122, 40sylan 581 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4241, 12syldan 592 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
431, 7, 42prodf 15829 . . . . . . 7 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
4443ffvelcdmda 7082 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ)
4515adantr 482 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
4626, 39, 44, 45divmuld 12008 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)))
4738, 46mpbird 257 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗))
4826, 39, 45divrec2d 11990 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
4947, 48eqtr3d 2775 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
501, 7, 8, 16, 18, 26, 49climmulc2 15577 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
51 climcl 15439 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝐴𝐴 ∈ ℂ)
528, 51syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
5352, 14, 15divrec2d 11990 . 2 (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
5450, 53breqtrrd 5175 1 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475   class class class wbr 5147  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   / cdiv 11867  cz 12554  cuz 12818  ...cfz 13480  seqcseq 13962  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  ntrivcvgtail  15842
  Copyright terms: Public domain W3C validator