MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divass Structured version   Visualization version   GIF version

Theorem divass 11797
Description: An associative law for division. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Proof of Theorem divass
StepHypRef Expression
1 reccl 11786 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℂ)
2 mulass 11097 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝐶) ∈ ℂ) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
31, 2syl3an3 1165 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
4 mulcl 11093 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
543adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
6 simp3l 1202 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
7 simp3r 1203 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
8 divrec 11795 . . 3 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
95, 6, 7, 8syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
10 simp2 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
11 divrec 11795 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1210, 6, 7, 11syl3anc 1373 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1312oveq2d 7365 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
143, 9, 133eqtr4d 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778
This theorem is referenced by:  div23  11798  div32  11799  divmulass  11802  divmulasscom  11803  divasszi  11874  divassd  11935  lt2mul2div  12003  zdivmul  12548  mertenslem1  15791  efi4p  16046  mulsucdiv2z  16264  relogbreexp  26683  divsqrtsumlem  26888  basellem8  26996  logexprlim  27134  bposlem6  27198  lgsquadlem2  27290  chebbnd1lem3  27380  vmadivsum  27391  dchrmusum2  27403  dchrisum0lem1b  27424  dchrisum0lem2  27427  mudivsum  27439  mulog2sumlem2  27444  selberglem1  27454  selberglem2  27455  pntlemb  27506  pntlemr  27511  pntlemj  27512  pntlemf  27514  pntlemk  27515  pntlemo  27516  dvasin  37684  stoweidlem24  46005
  Copyright terms: Public domain W3C validator