MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divass Structured version   Visualization version   GIF version

Theorem divass 11831
Description: An associative law for division. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Proof of Theorem divass
StepHypRef Expression
1 reccl 11820 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℂ)
2 mulass 11132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝐶) ∈ ℂ) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
31, 2syl3an3 1165 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
4 mulcl 11128 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
543adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
6 simp3l 1202 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
7 simp3r 1203 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
8 divrec 11829 . . 3 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
95, 6, 7, 8syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
10 simp2 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
11 divrec 11829 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1210, 6, 7, 11syl3anc 1373 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1312oveq2d 7385 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
143, 9, 133eqtr4d 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812
This theorem is referenced by:  div23  11832  div32  11833  divmulass  11836  divmulasscom  11837  divasszi  11908  divassd  11969  lt2mul2div  12037  zdivmul  12582  mertenslem1  15826  efi4p  16081  mulsucdiv2z  16299  relogbreexp  26661  divsqrtsumlem  26866  basellem8  26974  logexprlim  27112  bposlem6  27176  lgsquadlem2  27268  chebbnd1lem3  27358  vmadivsum  27369  dchrmusum2  27381  dchrisum0lem1b  27402  dchrisum0lem2  27405  mudivsum  27417  mulog2sumlem2  27422  selberglem1  27432  selberglem2  27433  pntlemb  27484  pntlemr  27489  pntlemj  27490  pntlemf  27492  pntlemk  27493  pntlemo  27494  dvasin  37671  stoweidlem24  45995
  Copyright terms: Public domain W3C validator