MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divass Structured version   Visualization version   GIF version

Theorem divass 11027
Description: An associative law for division. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Proof of Theorem divass
StepHypRef Expression
1 reccl 11016 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℂ)
2 mulass 10339 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝐶) ∈ ℂ) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
31, 2syl3an3 1211 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) · (1 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
4 mulcl 10335 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
543adant3 1168 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
6 simp3l 1264 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
7 simp3r 1265 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
8 divrec 11025 . . 3 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
95, 6, 7, 8syl3anc 1496 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 · 𝐵) · (1 / 𝐶)))
10 simp2 1173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
11 divrec 11025 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1210, 6, 7, 11syl3anc 1496 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1312oveq2d 6920 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐴 · (𝐵 · (1 / 𝐶))))
143, 9, 133eqtr4d 2870 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2998  (class class class)co 6904  cc 10249  0cc0 10251  1c1 10252   · cmul 10256   / cdiv 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-po 5262  df-so 5263  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009
This theorem is referenced by:  div23  11028  div32  11029  divmulass  11032  divmulasscom  11033  divasszi  11100  divassd  11161  lt2mul2div  11230  zdivmul  11776  mertenslem1  14988  efi4p  15238  mulsucdiv2z  15450  relogbreexp  24914  divsqrtsumlem  25118  basellem8  25226  logexprlim  25362  bposlem6  25426  lgsquadlem2  25518  chebbnd1lem3  25572  vmadivsum  25583  dchrmusum2  25595  dchrisum0lem1b  25616  dchrisum0lem2  25619  mudivsum  25631  mulog2sumlem2  25636  selberglem1  25646  selberglem2  25647  pntlemb  25698  pntlemr  25703  pntlemj  25704  pntlemf  25706  pntlemk  25707  pntlemo  25708  dvasin  34038  stoweidlem24  41034
  Copyright terms: Public domain W3C validator