MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Visualization version   GIF version

Theorem isnat2 17212
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
isnat2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
isnat2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 17126 . . . . 5 Rel (𝐶 Func 𝐷)
2 isnat2.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 1st2nd 7732 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 589 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 isnat2.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 1st2nd 7732 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
71, 5, 6sylancr 589 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
84, 7oveq12d 7168 . . 3 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
98eleq2d 2898 . 2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩)))
10 natfval.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
11 natfval.b . . 3 𝐵 = (Base‘𝐶)
12 natfval.h . . 3 𝐻 = (Hom ‘𝐶)
13 natfval.j . . 3 𝐽 = (Hom ‘𝐷)
14 natfval.o . . 3 · = (comp‘𝐷)
15 1st2ndbr 7735 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
161, 2, 15sylancr 589 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
17 1st2ndbr 7735 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
181, 5, 17sylancr 589 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 11, 12, 13, 14, 16, 18isnat 17211 . 2 (𝜑 → (𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
209, 19bitrd 281 1 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cop 4566   class class class wbr 5058  Rel wrel 5554  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Xcixp 8455  Basecbs 16477  Hom chom 16570  compcco 16571   Func cfunc 17118   Nat cnat 17205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-ixp 8456  df-func 17122  df-nat 17207
This theorem is referenced by:  fuccocl  17228  fucidcl  17229  invfuc  17238  curf2cl  17475  yonedalem4c  17521  yonedalem3  17524
  Copyright terms: Public domain W3C validator