Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnat2 | Structured version Visualization version GIF version |
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natfval.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
natfval.b | ⊢ 𝐵 = (Base‘𝐶) |
natfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
natfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
natfval.o | ⊢ · = (comp‘𝐷) |
isnat2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
isnat2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
Ref | Expression |
---|---|
isnat2 | ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfunc 17191 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
2 | isnat2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | 1st2nd 7742 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
4 | 1, 2, 3 | sylancr 590 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
5 | isnat2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
6 | 1st2nd 7742 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
7 | 1, 5, 6 | sylancr 590 | . . . 4 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
8 | 4, 7 | oveq12d 7168 | . . 3 ⊢ (𝜑 → (𝐹𝑁𝐺) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
9 | 8 | eleq2d 2837 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉))) |
10 | natfval.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
11 | natfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
12 | natfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
13 | natfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
14 | natfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
15 | 1st2ndbr 7745 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
16 | 1, 2, 15 | sylancr 590 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
17 | 1st2ndbr 7745 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | |
18 | 1, 5, 17 | sylancr 590 | . . 3 ⊢ (𝜑 → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
19 | 10, 11, 12, 13, 14, 16, 18 | isnat 17276 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
20 | 9, 19 | bitrd 282 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 〈cop 4528 class class class wbr 5032 Rel wrel 5529 ‘cfv 6335 (class class class)co 7150 1st c1st 7691 2nd c2nd 7692 Xcixp 8479 Basecbs 16541 Hom chom 16634 compcco 16635 Func cfunc 17183 Nat cnat 17270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-ixp 8480 df-func 17187 df-nat 17272 |
This theorem is referenced by: fuccocl 17293 fucidcl 17294 invfuc 17303 curf2cl 17547 yonedalem4c 17593 yonedalem3 17596 |
Copyright terms: Public domain | W3C validator |