MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Visualization version   GIF version

Theorem isnat2 17969
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
isnat2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
isnat2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 17880 . . . . 5 Rel (𝐶 Func 𝐷)
2 isnat2.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 1st2nd 8043 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 isnat2.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 1st2nd 8043 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
71, 5, 6sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
84, 7oveq12d 7428 . . 3 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
98eleq2d 2821 . 2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩)))
10 natfval.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
11 natfval.b . . 3 𝐵 = (Base‘𝐶)
12 natfval.h . . 3 𝐻 = (Hom ‘𝐶)
13 natfval.j . . 3 𝐽 = (Hom ‘𝐷)
14 natfval.o . . 3 · = (comp‘𝐷)
15 1st2ndbr 8046 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
161, 2, 15sylancr 587 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
17 1st2ndbr 8046 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
181, 5, 17sylancr 587 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 11, 12, 13, 14, 16, 18isnat 17968 . 2 (𝜑 → (𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
209, 19bitrd 279 1 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cop 4612   class class class wbr 5124  Rel wrel 5664  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Xcixp 8916  Basecbs 17233  Hom chom 17287  compcco 17288   Func cfunc 17872   Nat cnat 17962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-ixp 8917  df-func 17876  df-nat 17964
This theorem is referenced by:  fuccocl  17985  fucidcl  17986  invfuc  17995  curf2cl  18248  yonedalem4c  18294  yonedalem3  18297
  Copyright terms: Public domain W3C validator