MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Visualization version   GIF version

Theorem isnat2 17277
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
isnat2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
isnat2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 17191 . . . . 5 Rel (𝐶 Func 𝐷)
2 isnat2.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 1st2nd 7742 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 590 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 isnat2.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 1st2nd 7742 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
71, 5, 6sylancr 590 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
84, 7oveq12d 7168 . . 3 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
98eleq2d 2837 . 2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩)))
10 natfval.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
11 natfval.b . . 3 𝐵 = (Base‘𝐶)
12 natfval.h . . 3 𝐻 = (Hom ‘𝐶)
13 natfval.j . . 3 𝐽 = (Hom ‘𝐷)
14 natfval.o . . 3 · = (comp‘𝐷)
15 1st2ndbr 7745 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
161, 2, 15sylancr 590 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
17 1st2ndbr 7745 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
181, 5, 17sylancr 590 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 11, 12, 13, 14, 16, 18isnat 17276 . 2 (𝜑 → (𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
209, 19bitrd 282 1 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  cop 4528   class class class wbr 5032  Rel wrel 5529  cfv 6335  (class class class)co 7150  1st c1st 7691  2nd c2nd 7692  Xcixp 8479  Basecbs 16541  Hom chom 16634  compcco 16635   Func cfunc 17183   Nat cnat 17270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-ixp 8480  df-func 17187  df-nat 17272
This theorem is referenced by:  fuccocl  17293  fucidcl  17294  invfuc  17303  curf2cl  17547  yonedalem4c  17593  yonedalem3  17596
  Copyright terms: Public domain W3C validator