| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnat2 | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natfval.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| natfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| natfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| natfval.o | ⊢ · = (comp‘𝐷) |
| isnat2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| isnat2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| isnat2 | ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17862 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | isnat2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2nd 8033 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | isnat2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
| 6 | 1st2nd 8033 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 8 | 4, 7 | oveq12d 7418 | . . 3 ⊢ (𝜑 → (𝐹𝑁𝐺) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 9 | 8 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉))) |
| 10 | natfval.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 11 | natfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 12 | natfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 13 | natfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 14 | natfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 15 | 1st2ndbr 8036 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 16 | 1, 2, 15 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 1st2ndbr 8036 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | |
| 18 | 1, 5, 17 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
| 19 | 10, 11, 12, 13, 14, 16, 18 | isnat 17950 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| 20 | 9, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 〈cop 4605 class class class wbr 5117 Rel wrel 5657 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Xcixp 8906 Basecbs 17215 Hom chom 17269 compcco 17270 Func cfunc 17854 Nat cnat 17944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-ixp 8907 df-func 17858 df-nat 17946 |
| This theorem is referenced by: fuccocl 17967 fucidcl 17968 invfuc 17977 curf2cl 18230 yonedalem4c 18276 yonedalem3 18279 |
| Copyright terms: Public domain | W3C validator |