MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Visualization version   GIF version

Theorem isnat2 17580
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
isnat2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
isnat2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 17493 . . . . 5 Rel (𝐶 Func 𝐷)
2 isnat2.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 1st2nd 7853 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 586 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 isnat2.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 1st2nd 7853 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
71, 5, 6sylancr 586 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
84, 7oveq12d 7273 . . 3 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
98eleq2d 2824 . 2 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩)))
10 natfval.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
11 natfval.b . . 3 𝐵 = (Base‘𝐶)
12 natfval.h . . 3 𝐻 = (Hom ‘𝐶)
13 natfval.j . . 3 𝐽 = (Hom ‘𝐷)
14 natfval.o . . 3 · = (comp‘𝐷)
15 1st2ndbr 7856 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
161, 2, 15sylancr 586 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
17 1st2ndbr 7856 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
181, 5, 17sylancr 586 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 11, 12, 13, 14, 16, 18isnat 17579 . 2 (𝜑 → (𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
209, 19bitrd 278 1 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴X𝑥𝐵 (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩ · ((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘)) = (((𝑥(2nd𝐺)𝑦)‘)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ · ((1st𝐺)‘𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cop 4564   class class class wbr 5070  Rel wrel 5585  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900   Func cfunc 17485   Nat cnat 17573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ixp 8644  df-func 17489  df-nat 17575
This theorem is referenced by:  fuccocl  17598  fucidcl  17599  invfuc  17608  curf2cl  17865  yonedalem4c  17911  yonedalem3  17914
  Copyright terms: Public domain W3C validator