| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnat2 | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natfval.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| natfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| natfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| natfval.o | ⊢ · = (comp‘𝐷) |
| isnat2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| isnat2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| isnat2 | ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17773 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | isnat2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2nd 7979 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | isnat2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
| 6 | 1st2nd 7979 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 8 | 4, 7 | oveq12d 7372 | . . 3 ⊢ (𝜑 → (𝐹𝑁𝐺) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 9 | 8 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉))) |
| 10 | natfval.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 11 | natfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 12 | natfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 13 | natfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 14 | natfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 15 | 1st2ndbr 7982 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 16 | 1, 2, 15 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 1st2ndbr 7982 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | |
| 18 | 1, 5, 17 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
| 19 | 10, 11, 12, 13, 14, 16, 18 | isnat 17861 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| 20 | 9, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉 · ((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝐺)𝑦)‘ℎ)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 · ((1st ‘𝐺)‘𝑦))(𝐴‘𝑥))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4583 class class class wbr 5095 Rel wrel 5626 ‘cfv 6488 (class class class)co 7354 1st c1st 7927 2nd c2nd 7928 Xcixp 8829 Basecbs 17124 Hom chom 17176 compcco 17177 Func cfunc 17765 Nat cnat 17855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-ixp 8830 df-func 17769 df-nat 17857 |
| This theorem is referenced by: fuccocl 17878 fucidcl 17879 invfuc 17888 curf2cl 18141 yonedalem4c 18187 yonedalem3 18190 |
| Copyright terms: Public domain | W3C validator |