MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuclid Structured version   Visualization version   GIF version

Theorem fuclid 17967
Description: Left identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuclid.q 𝑄 = (𝐶 FuncCat 𝐷)
fuclid.n 𝑁 = (𝐶 Nat 𝐷)
fuclid.x = (comp‘𝑄)
fuclid.1 1 = (Id‘𝐷)
fuclid.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
fuclid (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = 𝑅)

Proof of Theorem fuclid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2734 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 relfunc 17860 . . . . . . . 8 Rel (𝐶 Func 𝐷)
4 fuclid.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fuclid.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 17951 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simprd 495 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
9 1st2ndbr 8035 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
103, 8, 9sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
111, 2, 10funcf1 17864 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
12 fvco3 6974 . . . . . 6 (((1st𝐺):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐺))‘𝑥) = ( 1 ‘((1st𝐺)‘𝑥)))
1311, 12sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐺))‘𝑥) = ( 1 ‘((1st𝐺)‘𝑥)))
1413oveq1d 7414 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (( 1 ‘((1st𝐺)‘𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)))
15 eqid 2734 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
16 fuclid.1 . . . . 5 1 = (Id‘𝐷)
177simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
18 funcrcl 17861 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
22 1st2ndbr 8035 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
233, 17, 22sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
241, 2, 23funcf1 17864 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2524ffvelcdmda 7070 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
26 eqid 2734 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
2711ffvelcdmda 7070 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
285, 4nat1st2nd 17952 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
30 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
315, 29, 1, 15, 30natcl 17954 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
322, 15, 16, 21, 25, 26, 27, 31catlid 17680 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (( 1 ‘((1st𝐺)‘𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (𝑅𝑥))
3314, 32eqtrd 2769 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (𝑅𝑥))
3433mpteq2dva 5211 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
35 fuclid.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
36 fuclid.x . . 3 = (comp‘𝑄)
3735, 5, 16, 8fucidcl 17966 . . 3 (𝜑 → ( 1 ∘ (1st𝐺)) ∈ (𝐺𝑁𝐺))
3835, 5, 1, 26, 36, 4, 37fucco 17963 . 2 (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥))))
395, 28, 1natfn 17955 . . 3 (𝜑𝑅 Fn (Base‘𝐶))
40 dffn5 6933 . . 3 (𝑅 Fn (Base‘𝐶) ↔ 𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4139, 40sylib 218 . 2 (𝜑𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4234, 38, 413eqtr4d 2779 1 (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4605   class class class wbr 5116  cmpt 5198  ccom 5655  Rel wrel 5656   Fn wfn 6522  wf 6523  cfv 6527  (class class class)co 7399  1st c1st 7980  2nd c2nd 7981  Basecbs 17213  Hom chom 17267  compcco 17268  Catccat 17661  Idccid 17662   Func cfunc 17852   Nat cnat 17942   FuncCat cfuc 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-hom 17280  df-cco 17281  df-cat 17665  df-cid 17666  df-func 17856  df-nat 17944  df-fuc 17945
This theorem is referenced by:  fuccatid  17970
  Copyright terms: Public domain W3C validator