MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuclid Structured version   Visualization version   GIF version

Theorem fuclid 17923
Description: Left identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuclid.q 𝑄 = (𝐶 FuncCat 𝐷)
fuclid.n 𝑁 = (𝐶 Nat 𝐷)
fuclid.x = (comp‘𝑄)
fuclid.1 1 = (Id‘𝐷)
fuclid.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
fuclid (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = 𝑅)

Proof of Theorem fuclid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 relfunc 17816 . . . . . . . 8 Rel (𝐶 Func 𝐷)
4 fuclid.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fuclid.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 17905 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simprd 494 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
9 1st2ndbr 8030 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
103, 8, 9sylancr 585 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
111, 2, 10funcf1 17820 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
12 fvco3 6989 . . . . . 6 (((1st𝐺):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐺))‘𝑥) = ( 1 ‘((1st𝐺)‘𝑥)))
1311, 12sylan 578 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐺))‘𝑥) = ( 1 ‘((1st𝐺)‘𝑥)))
1413oveq1d 7426 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (( 1 ‘((1st𝐺)‘𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)))
15 eqid 2730 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
16 fuclid.1 . . . . 5 1 = (Id‘𝐷)
177simpld 493 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
18 funcrcl 17817 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simprd 494 . . . . . 6 (𝜑𝐷 ∈ Cat)
2120adantr 479 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
22 1st2ndbr 8030 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
233, 17, 22sylancr 585 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
241, 2, 23funcf1 17820 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2524ffvelcdmda 7085 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
26 eqid 2730 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
2711ffvelcdmda 7085 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
285, 4nat1st2nd 17906 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
2928adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
30 simpr 483 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
315, 29, 1, 15, 30natcl 17908 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
322, 15, 16, 21, 25, 26, 27, 31catlid 17631 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (( 1 ‘((1st𝐺)‘𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (𝑅𝑥))
3314, 32eqtrd 2770 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥)) = (𝑅𝑥))
3433mpteq2dva 5247 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
35 fuclid.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
36 fuclid.x . . 3 = (comp‘𝑄)
3735, 5, 16, 8fucidcl 17922 . . 3 (𝜑 → ( 1 ∘ (1st𝐺)) ∈ (𝐺𝑁𝐺))
3835, 5, 1, 26, 36, 4, 37fucco 17919 . 2 (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st𝐺))‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(𝑅𝑥))))
395, 28, 1natfn 17909 . . 3 (𝜑𝑅 Fn (Base‘𝐶))
40 dffn5 6949 . . 3 (𝑅 Fn (Base‘𝐶) ↔ 𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4139, 40sylib 217 . 2 (𝜑𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4234, 38, 413eqtr4d 2780 1 (𝜑 → (( 1 ∘ (1st𝐺))(⟨𝐹, 𝐺 𝐺)𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  cop 4633   class class class wbr 5147  cmpt 5230  ccom 5679  Rel wrel 5680   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  Basecbs 17148  Hom chom 17212  compcco 17213  Catccat 17612  Idccid 17613   Func cfunc 17808   Nat cnat 17896   FuncCat cfuc 17897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-hom 17225  df-cco 17226  df-cat 17616  df-cid 17617  df-func 17812  df-nat 17898  df-fuc 17899
This theorem is referenced by:  fuccatid  17926
  Copyright terms: Public domain W3C validator