Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
3 | | relfunc 17368 |
. . . . . . . 8
⊢ Rel
(𝐶 Func 𝐷) |
4 | | fuclid.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝐹𝑁𝐺)) |
5 | | fuclid.n |
. . . . . . . . . . 11
⊢ 𝑁 = (𝐶 Nat 𝐷) |
6 | 5 | natrcl 17457 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
7 | 4, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
8 | 7 | simprd 499 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
9 | | 1st2ndbr 7813 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
10 | 3, 8, 9 | sylancr 590 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
11 | 1, 2, 10 | funcf1 17372 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐷)) |
12 | | fvco3 6810 |
. . . . . 6
⊢
(((1st ‘𝐺):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st
‘𝐺))‘𝑥) = ( 1 ‘((1st
‘𝐺)‘𝑥))) |
13 | 11, 12 | sylan 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st
‘𝐺))‘𝑥) = ( 1 ‘((1st
‘𝐺)‘𝑥))) |
14 | 13 | oveq1d 7228 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st
‘𝐺))‘𝑥)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥)) = (( 1 ‘((1st
‘𝐺)‘𝑥))(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥))) |
15 | | eqid 2737 |
. . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
16 | | fuclid.1 |
. . . . 5
⊢ 1 =
(Id‘𝐷) |
17 | 7 | simpld 498 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
18 | | funcrcl 17369 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
20 | 19 | simprd 499 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
21 | 20 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
22 | | 1st2ndbr 7813 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
23 | 3, 17, 22 | sylancr 590 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
24 | 1, 2, 23 | funcf1 17372 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
25 | 24 | ffvelrnda 6904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
26 | | eqid 2737 |
. . . . 5
⊢
(comp‘𝐷) =
(comp‘𝐷) |
27 | 11 | ffvelrnda 6904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
28 | 5, 4 | nat1st2nd 17458 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
29 | 28 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
30 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
31 | 5, 29, 1, 15, 30 | natcl 17460 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑅‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) |
32 | 2, 15, 16, 21, 25, 26, 27, 31 | catlid 17186 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ‘((1st
‘𝐺)‘𝑥))(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥)) = (𝑅‘𝑥)) |
33 | 14, 32 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((( 1 ∘ (1st
‘𝐺))‘𝑥)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥)) = (𝑅‘𝑥)) |
34 | 33 | mpteq2dva 5150 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st
‘𝐺))‘𝑥)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅‘𝑥))) |
35 | | fuclid.q |
. . 3
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
36 | | fuclid.x |
. . 3
⊢ ∙ =
(comp‘𝑄) |
37 | 35, 5, 16, 8 | fucidcl 17474 |
. . 3
⊢ (𝜑 → ( 1 ∘ (1st
‘𝐺)) ∈ (𝐺𝑁𝐺)) |
38 | 35, 5, 1, 26, 36, 4, 37 | fucco 17471 |
. 2
⊢ (𝜑 → (( 1 ∘ (1st
‘𝐺))(〈𝐹, 𝐺〉 ∙ 𝐺)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((( 1 ∘ (1st
‘𝐺))‘𝑥)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑥))(𝑅‘𝑥)))) |
39 | 5, 28, 1 | natfn 17461 |
. . 3
⊢ (𝜑 → 𝑅 Fn (Base‘𝐶)) |
40 | | dffn5 6771 |
. . 3
⊢ (𝑅 Fn (Base‘𝐶) ↔ 𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅‘𝑥))) |
41 | 39, 40 | sylib 221 |
. 2
⊢ (𝜑 → 𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅‘𝑥))) |
42 | 34, 38, 41 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (( 1 ∘ (1st
‘𝐺))(〈𝐹, 𝐺〉 ∙ 𝐺)𝑅) = 𝑅) |