MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucrid Structured version   Visualization version   GIF version

Theorem fucrid 17885
Description: Right identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuclid.q 𝑄 = (𝐶 FuncCat 𝐷)
fuclid.n 𝑁 = (𝐶 Nat 𝐷)
fuclid.x = (comp‘𝑄)
fuclid.1 1 = (Id‘𝐷)
fuclid.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
fucrid (𝜑 → (𝑅(⟨𝐹, 𝐹 𝐺)( 1 ∘ (1st𝐹))) = 𝑅)

Proof of Theorem fucrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2733 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 relfunc 17777 . . . . . . . 8 Rel (𝐶 Func 𝐷)
4 fuclid.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fuclid.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 17868 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 1st2ndbr 7983 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
103, 8, 9sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
111, 2, 10funcf1 17781 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
12 fvco3 6930 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
1311, 12sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
1413oveq2d 7371 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(( 1 ∘ (1st𝐹))‘𝑥)) = ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))( 1 ‘((1st𝐹)‘𝑥))))
15 eqid 2733 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
16 fuclid.1 . . . . 5 1 = (Id‘𝐷)
17 funcrcl 17778 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
188, 17syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1918simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
2019adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2111ffvelcdmda 7026 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
22 eqid 2733 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
237simprd 495 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
24 1st2ndbr 7983 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
253, 23, 24sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
261, 2, 25funcf1 17781 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2726ffvelcdmda 7026 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
285, 4nat1st2nd 17869 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
2928adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
30 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
315, 29, 1, 15, 30natcl 17871 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
322, 15, 16, 20, 21, 22, 27, 31catrid 17598 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))( 1 ‘((1st𝐹)‘𝑥))) = (𝑅𝑥))
3314, 32eqtrd 2768 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(( 1 ∘ (1st𝐹))‘𝑥)) = (𝑅𝑥))
3433mpteq2dva 5188 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(( 1 ∘ (1st𝐹))‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
35 fuclid.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
36 fuclid.x . . 3 = (comp‘𝑄)
3735, 5, 16, 8fucidcl 17883 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
3835, 5, 1, 22, 36, 37, 4fucco 17880 . 2 (𝜑 → (𝑅(⟨𝐹, 𝐹 𝐺)( 1 ∘ (1st𝐹))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑥))(( 1 ∘ (1st𝐹))‘𝑥))))
395, 28, 1natfn 17872 . . 3 (𝜑𝑅 Fn (Base‘𝐶))
40 dffn5 6889 . . 3 (𝑅 Fn (Base‘𝐶) ↔ 𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4139, 40sylib 218 . 2 (𝜑𝑅 = (𝑥 ∈ (Base‘𝐶) ↦ (𝑅𝑥)))
4234, 38, 413eqtr4d 2778 1 (𝜑 → (𝑅(⟨𝐹, 𝐹 𝐺)( 1 ∘ (1st𝐹))) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  cmpt 5176  ccom 5625  Rel wrel 5626   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Idccid 17579   Func cfunc 17769   Nat cnat 17859   FuncCat cfuc 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-func 17773  df-nat 17861  df-fuc 17862
This theorem is referenced by:  fuccatid  17887
  Copyright terms: Public domain W3C validator