Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem1 Structured version   Visualization version   GIF version

Theorem cycpmco2lem1 30803
 Description: Lemma for cycpmco2 30810. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))

Proof of Theorem cycpmco2lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . 3 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . 3 (𝜑𝐷𝑉)
3 cycpmco2.i . . . 4 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
43eldifad 3932 . . 3 (𝜑𝐼𝐷)
5 ssrab2 4043 . . . . . . . 8 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
6 cycpmco2.w . . . . . . . . 9 (𝜑𝑊 ∈ dom 𝑀)
7 cycpmco2.s . . . . . . . . . . . 12 𝑆 = (SymGrp‘𝐷)
8 eqid 2824 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
91, 7, 8tocycf 30794 . . . . . . . . . . 11 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
102, 9syl 17 . . . . . . . . . 10 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
1110fdmd 6514 . . . . . . . . 9 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
126, 11eleqtrd 2918 . . . . . . . 8 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
135, 12sseldi 3952 . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
14 id 22 . . . . . . . . . 10 (𝑤 = 𝑊𝑤 = 𝑊)
15 dmeq 5760 . . . . . . . . . 10 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
16 eqidd 2825 . . . . . . . . . 10 (𝑤 = 𝑊𝐷 = 𝐷)
1714, 15, 16f1eq123d 6600 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1817elrab3 3668 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ 𝑊:dom 𝑊1-1𝐷))
1918biimpa 480 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → 𝑊:dom 𝑊1-1𝐷)
2013, 12, 19syl2anc 587 . . . . . 6 (𝜑𝑊:dom 𝑊1-1𝐷)
21 f1f 6566 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
2220, 21syl 17 . . . . 5 (𝜑𝑊:dom 𝑊𝐷)
2322frnd 6511 . . . 4 (𝜑 → ran 𝑊𝐷)
24 cycpmco2.j . . . 4 (𝜑𝐽 ∈ ran 𝑊)
2523, 24sseldd 3955 . . 3 (𝜑𝐽𝐷)
263eldifbd 3933 . . . . 5 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
27 nelne2 3111 . . . . 5 ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽𝐼)
2824, 26, 27syl2anc 587 . . . 4 (𝜑𝐽𝐼)
2928necomd 3069 . . 3 (𝜑𝐼𝐽)
301, 2, 4, 25, 29, 7cyc2fv1 30798 . 2 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
3130fveq2d 6666 1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  {crab 3137   ∖ cdif 3917  ⟨cotp 4559  ◡ccnv 5542  dom cdm 5543  ran crn 5544  ⟶wf 6340  –1-1→wf1 6341  ‘cfv 6344  (class class class)co 7150  1c1 10537   + caddc 10539  Word cword 13869  ⟨“cs1 13952   splice csplice 14114  ⟨“cs2 14206  Basecbs 16486  SymGrpcsymg 18498  toCycctocyc 30783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8904  df-inf 8905  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-uz 12244  df-rp 12390  df-fz 12898  df-fzo 13041  df-fl 13169  df-mod 13245  df-hash 13699  df-word 13870  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-csh 14154  df-s2 14213  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-efmnd 18037  df-symg 18499  df-tocyc 30784 This theorem is referenced by:  cycpmco2lem4  30806
 Copyright terms: Public domain W3C validator