| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmco2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cycpmco2 33088. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycpmco2.c | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmco2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmco2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpmco2.w | ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
| cycpmco2.i | ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
| cycpmco2.j | ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
| cycpmco2.e | ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
| cycpmco2.1 | ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
| Ref | Expression |
|---|---|
| cycpmco2lem1 | ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpmco2.c | . . 3 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 2 | cycpmco2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpmco2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) | |
| 4 | 3 | eldifad 3917 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 5 | ssrab2 4033 | . . . . . . . 8 ⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 | |
| 6 | cycpmco2.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) | |
| 7 | cycpmco2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 8 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | 1, 7, 8 | tocycf 33072 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 11 | 10 | fdmd 6666 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 12 | 6, 11 | eleqtrd 2830 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 13 | 5, 12 | sselid 3935 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| 14 | id 22 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 15 | dmeq 5850 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) | |
| 16 | eqidd 2730 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) | |
| 17 | 14, 15, 16 | f1eq123d 6760 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 18 | 17 | elrab3 3651 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 19 | 18 | biimpa 476 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → 𝑊:dom 𝑊–1-1→𝐷) |
| 20 | 13, 12, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| 21 | f1f 6724 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
| 23 | 22 | frnd 6664 | . . . 4 ⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
| 24 | cycpmco2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) | |
| 25 | 23, 24 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 26 | 3 | eldifbd 3918 | . . . . 5 ⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
| 27 | nelne2 3023 | . . . . 5 ⊢ ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽 ≠ 𝐼) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐼) |
| 29 | 28 | necomd 2980 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 30 | 1, 2, 4, 25, 29, 7 | cyc2fv1 33076 | . 2 ⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| 31 | 30 | fveq2d 6830 | 1 ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 ∖ cdif 3902 〈cotp 4587 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 1c1 11029 + caddc 11031 Word cword 14438 〈“cs1 14520 splice csplice 14673 〈“cs2 14766 Basecbs 17138 SymGrpcsymg 19266 toCycctocyc 33061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-csh 14713 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-tset 17198 df-efmnd 18761 df-symg 19267 df-tocyc 33062 |
| This theorem is referenced by: cycpmco2lem4 33084 |
| Copyright terms: Public domain | W3C validator |