| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmco2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cycpmco2 33090. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycpmco2.c | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmco2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmco2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpmco2.w | ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
| cycpmco2.i | ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
| cycpmco2.j | ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
| cycpmco2.e | ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
| cycpmco2.1 | ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
| Ref | Expression |
|---|---|
| cycpmco2lem1 | ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpmco2.c | . . 3 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 2 | cycpmco2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpmco2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) | |
| 4 | 3 | eldifad 3926 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 5 | ssrab2 4043 | . . . . . . . 8 ⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 | |
| 6 | cycpmco2.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) | |
| 7 | cycpmco2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 8 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | 1, 7, 8 | tocycf 33074 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 11 | 10 | fdmd 6698 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 12 | 6, 11 | eleqtrd 2830 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 13 | 5, 12 | sselid 3944 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| 14 | id 22 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 15 | dmeq 5867 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) | |
| 16 | eqidd 2730 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) | |
| 17 | 14, 15, 16 | f1eq123d 6792 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 18 | 17 | elrab3 3660 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 19 | 18 | biimpa 476 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → 𝑊:dom 𝑊–1-1→𝐷) |
| 20 | 13, 12, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| 21 | f1f 6756 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
| 23 | 22 | frnd 6696 | . . . 4 ⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
| 24 | cycpmco2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) | |
| 25 | 23, 24 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 26 | 3 | eldifbd 3927 | . . . . 5 ⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
| 27 | nelne2 3023 | . . . . 5 ⊢ ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽 ≠ 𝐼) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐼) |
| 29 | 28 | necomd 2980 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 30 | 1, 2, 4, 25, 29, 7 | cyc2fv1 33078 | . 2 ⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| 31 | 30 | fveq2d 6862 | 1 ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 ∖ cdif 3911 〈cotp 4597 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 1c1 11069 + caddc 11071 Word cword 14478 〈“cs1 14560 splice csplice 14714 〈“cs2 14807 Basecbs 17179 SymGrpcsymg 19299 toCycctocyc 33063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-csh 14754 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-efmnd 18796 df-symg 19300 df-tocyc 33064 |
| This theorem is referenced by: cycpmco2lem4 33086 |
| Copyright terms: Public domain | W3C validator |