Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem1 Structured version   Visualization version   GIF version

Theorem cycpmco2lem1 33147
Description: Lemma for cycpmco2 33154. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))

Proof of Theorem cycpmco2lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . 3 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . 3 (𝜑𝐷𝑉)
3 cycpmco2.i . . . 4 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
43eldifad 3962 . . 3 (𝜑𝐼𝐷)
5 ssrab2 4079 . . . . . . . 8 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
6 cycpmco2.w . . . . . . . . 9 (𝜑𝑊 ∈ dom 𝑀)
7 cycpmco2.s . . . . . . . . . . . 12 𝑆 = (SymGrp‘𝐷)
8 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
91, 7, 8tocycf 33138 . . . . . . . . . . 11 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
102, 9syl 17 . . . . . . . . . 10 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
1110fdmd 6745 . . . . . . . . 9 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
126, 11eleqtrd 2842 . . . . . . . 8 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
135, 12sselid 3980 . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
14 id 22 . . . . . . . . . 10 (𝑤 = 𝑊𝑤 = 𝑊)
15 dmeq 5913 . . . . . . . . . 10 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
16 eqidd 2737 . . . . . . . . . 10 (𝑤 = 𝑊𝐷 = 𝐷)
1714, 15, 16f1eq123d 6839 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1817elrab3 3692 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ 𝑊:dom 𝑊1-1𝐷))
1918biimpa 476 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → 𝑊:dom 𝑊1-1𝐷)
2013, 12, 19syl2anc 584 . . . . . 6 (𝜑𝑊:dom 𝑊1-1𝐷)
21 f1f 6803 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
2220, 21syl 17 . . . . 5 (𝜑𝑊:dom 𝑊𝐷)
2322frnd 6743 . . . 4 (𝜑 → ran 𝑊𝐷)
24 cycpmco2.j . . . 4 (𝜑𝐽 ∈ ran 𝑊)
2523, 24sseldd 3983 . . 3 (𝜑𝐽𝐷)
263eldifbd 3963 . . . . 5 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
27 nelne2 3039 . . . . 5 ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽𝐼)
2824, 26, 27syl2anc 584 . . . 4 (𝜑𝐽𝐼)
2928necomd 2995 . . 3 (𝜑𝐼𝐽)
301, 2, 4, 25, 29, 7cyc2fv1 33142 . 2 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
3130fveq2d 6909 1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  wne 2939  {crab 3435  cdif 3947  cotp 4633  ccnv 5683  dom cdm 5684  ran crn 5685  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  1c1 11157   + caddc 11159  Word cword 14553  ⟨“cs1 14634   splice csplice 14788  ⟨“cs2 14881  Basecbs 17248  SymGrpcsymg 19387  toCycctocyc 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-csh 14828  df-s2 14888  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-efmnd 18883  df-symg 19388  df-tocyc 33128
This theorem is referenced by:  cycpmco2lem4  33150
  Copyright terms: Public domain W3C validator