| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmco2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cycpmco2 33094. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycpmco2.c | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmco2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmco2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpmco2.w | ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
| cycpmco2.i | ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
| cycpmco2.j | ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
| cycpmco2.e | ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
| cycpmco2.1 | ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
| Ref | Expression |
|---|---|
| cycpmco2lem1 | ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpmco2.c | . . 3 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 2 | cycpmco2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpmco2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) | |
| 4 | 3 | eldifad 3909 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 5 | ssrab2 4025 | . . . . . . . 8 ⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 | |
| 6 | cycpmco2.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) | |
| 7 | cycpmco2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 8 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | 1, 7, 8 | tocycf 33078 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 11 | 10 | fdmd 6656 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 12 | 6, 11 | eleqtrd 2833 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 13 | 5, 12 | sselid 3927 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| 14 | id 22 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 15 | dmeq 5838 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) | |
| 16 | eqidd 2732 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) | |
| 17 | 14, 15, 16 | f1eq123d 6750 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 18 | 17 | elrab3 3643 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 19 | 18 | biimpa 476 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → 𝑊:dom 𝑊–1-1→𝐷) |
| 20 | 13, 12, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| 21 | f1f 6714 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
| 23 | 22 | frnd 6654 | . . . 4 ⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
| 24 | cycpmco2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) | |
| 25 | 23, 24 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 26 | 3 | eldifbd 3910 | . . . . 5 ⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
| 27 | nelne2 3026 | . . . . 5 ⊢ ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽 ≠ 𝐼) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐼) |
| 29 | 28 | necomd 2983 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 30 | 1, 2, 4, 25, 29, 7 | cyc2fv1 33082 | . 2 ⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| 31 | 30 | fveq2d 6821 | 1 ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∖ cdif 3894 〈cotp 4579 ◡ccnv 5610 dom cdm 5611 ran crn 5612 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 1c1 11002 + caddc 11004 Word cword 14415 〈“cs1 14498 splice csplice 14651 〈“cs2 14743 Basecbs 17115 SymGrpcsymg 19276 toCycctocyc 33067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-csh 14691 df-s2 14750 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-tset 17175 df-efmnd 18772 df-symg 19277 df-tocyc 33068 |
| This theorem is referenced by: cycpmco2lem4 33090 |
| Copyright terms: Public domain | W3C validator |