Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmco2lem1 | Structured version Visualization version GIF version |
Description: Lemma for cycpmco2 31302. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
Ref | Expression |
---|---|
cycpmco2.c | ⊢ 𝑀 = (toCyc‘𝐷) |
cycpmco2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpmco2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpmco2.w | ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
cycpmco2.i | ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
cycpmco2.j | ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
cycpmco2.e | ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
cycpmco2.1 | ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
Ref | Expression |
---|---|
cycpmco2lem1 | ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpmco2.c | . . 3 ⊢ 𝑀 = (toCyc‘𝐷) | |
2 | cycpmco2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpmco2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) | |
4 | 3 | eldifad 3895 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
5 | ssrab2 4009 | . . . . . . . 8 ⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 | |
6 | cycpmco2.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) | |
7 | cycpmco2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (SymGrp‘𝐷) | |
8 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 1, 7, 8 | tocycf 31286 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
11 | 10 | fdmd 6595 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
12 | 6, 11 | eleqtrd 2841 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
13 | 5, 12 | sselid 3915 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
14 | id 22 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
15 | dmeq 5801 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) | |
16 | eqidd 2739 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) | |
17 | 14, 15, 16 | f1eq123d 6692 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
18 | 17 | elrab3 3618 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
19 | 18 | biimpa 476 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → 𝑊:dom 𝑊–1-1→𝐷) |
20 | 13, 12, 19 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
21 | f1f 6654 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
23 | 22 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
24 | cycpmco2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) | |
25 | 23, 24 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
26 | 3 | eldifbd 3896 | . . . . 5 ⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
27 | nelne2 3041 | . . . . 5 ⊢ ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽 ≠ 𝐼) | |
28 | 24, 26, 27 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐼) |
29 | 28 | necomd 2998 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
30 | 1, 2, 4, 25, 29, 7 | cyc2fv1 31290 | . 2 ⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
31 | 30 | fveq2d 6760 | 1 ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∖ cdif 3880 〈cotp 4566 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 Word cword 14145 〈“cs1 14228 splice csplice 14390 〈“cs2 14482 Basecbs 16840 SymGrpcsymg 18889 toCycctocyc 31275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-csh 14430 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 df-tocyc 31276 |
This theorem is referenced by: cycpmco2lem4 31298 |
Copyright terms: Public domain | W3C validator |