Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem1 Structured version   Visualization version   GIF version

Theorem cycpmco2lem1 33142
Description: Lemma for cycpmco2 33149. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))

Proof of Theorem cycpmco2lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . 3 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . 3 (𝜑𝐷𝑉)
3 cycpmco2.i . . . 4 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
43eldifad 3943 . . 3 (𝜑𝐼𝐷)
5 ssrab2 4060 . . . . . . . 8 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
6 cycpmco2.w . . . . . . . . 9 (𝜑𝑊 ∈ dom 𝑀)
7 cycpmco2.s . . . . . . . . . . . 12 𝑆 = (SymGrp‘𝐷)
8 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
91, 7, 8tocycf 33133 . . . . . . . . . . 11 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
102, 9syl 17 . . . . . . . . . 10 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
1110fdmd 6721 . . . . . . . . 9 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
126, 11eleqtrd 2837 . . . . . . . 8 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
135, 12sselid 3961 . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
14 id 22 . . . . . . . . . 10 (𝑤 = 𝑊𝑤 = 𝑊)
15 dmeq 5888 . . . . . . . . . 10 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
16 eqidd 2737 . . . . . . . . . 10 (𝑤 = 𝑊𝐷 = 𝐷)
1714, 15, 16f1eq123d 6815 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1817elrab3 3677 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ 𝑊:dom 𝑊1-1𝐷))
1918biimpa 476 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}) → 𝑊:dom 𝑊1-1𝐷)
2013, 12, 19syl2anc 584 . . . . . 6 (𝜑𝑊:dom 𝑊1-1𝐷)
21 f1f 6779 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
2220, 21syl 17 . . . . 5 (𝜑𝑊:dom 𝑊𝐷)
2322frnd 6719 . . . 4 (𝜑 → ran 𝑊𝐷)
24 cycpmco2.j . . . 4 (𝜑𝐽 ∈ ran 𝑊)
2523, 24sseldd 3964 . . 3 (𝜑𝐽𝐷)
263eldifbd 3944 . . . . 5 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
27 nelne2 3031 . . . . 5 ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽𝐼)
2824, 26, 27syl2anc 584 . . . 4 (𝜑𝐽𝐼)
2928necomd 2988 . . 3 (𝜑𝐼𝐽)
301, 2, 4, 25, 29, 7cyc2fv1 33137 . 2 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
3130fveq2d 6885 1 (𝜑 → ((𝑀𝑊)‘((𝑀‘⟨“𝐼𝐽”⟩)‘𝐼)) = ((𝑀𝑊)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2933  {crab 3420  cdif 3928  cotp 4614  ccnv 5658  dom cdm 5659  ran crn 5660  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  Word cword 14536  ⟨“cs1 14618   splice csplice 14772  ⟨“cs2 14865  Basecbs 17233  SymGrpcsymg 19355  toCycctocyc 33122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-csh 14812  df-s2 14872  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-tset 17295  df-efmnd 18852  df-symg 19356  df-tocyc 33123
This theorem is referenced by:  cycpmco2lem4  33145
  Copyright terms: Public domain W3C validator