| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmco2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cycpmco2 33143. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycpmco2.c | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmco2.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmco2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpmco2.w | ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
| cycpmco2.i | ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
| cycpmco2.j | ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
| cycpmco2.e | ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
| cycpmco2.1 | ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
| Ref | Expression |
|---|---|
| cycpmco2lem1 | ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpmco2.c | . . 3 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 2 | cycpmco2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpmco2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) | |
| 4 | 3 | eldifad 3910 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 5 | ssrab2 4029 | . . . . . . . 8 ⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 | |
| 6 | cycpmco2.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) | |
| 7 | cycpmco2.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 8 | eqid 2733 | . . . . . . . . . . . 12 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | 1, 7, 8 | tocycf 33127 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 10 | 2, 9 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
| 11 | 10 | fdmd 6669 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 12 | 6, 11 | eleqtrd 2835 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 13 | 5, 12 | sselid 3928 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| 14 | id 22 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 15 | dmeq 5849 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) | |
| 16 | eqidd 2734 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) | |
| 17 | 14, 15, 16 | f1eq123d 6763 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 18 | 17 | elrab3 3644 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 19 | 18 | biimpa 476 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) → 𝑊:dom 𝑊–1-1→𝐷) |
| 20 | 13, 12, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| 21 | f1f 6727 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
| 23 | 22 | frnd 6667 | . . . 4 ⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
| 24 | cycpmco2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) | |
| 25 | 23, 24 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 26 | 3 | eldifbd 3911 | . . . . 5 ⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
| 27 | nelne2 3027 | . . . . 5 ⊢ ((𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊) → 𝐽 ≠ 𝐼) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐼) |
| 29 | 28 | necomd 2984 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 30 | 1, 2, 4, 25, 29, 7 | cyc2fv1 33131 | . 2 ⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| 31 | 30 | fveq2d 6835 | 1 ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ∖ cdif 3895 〈cotp 4585 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 (class class class)co 7355 1c1 11018 + caddc 11020 Word cword 14427 〈“cs1 14510 splice csplice 14663 〈“cs2 14755 Basecbs 17127 SymGrpcsymg 19289 toCycctocyc 33116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-substr 14556 df-pfx 14586 df-csh 14703 df-s2 14762 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-tset 17187 df-efmnd 18785 df-symg 19290 df-tocyc 33117 |
| This theorem is referenced by: cycpmco2lem4 33139 |
| Copyright terms: Public domain | W3C validator |