![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 29998 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetre.2 | β’ π = (BaseSetβπ) |
nmosetre.4 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nmosetre | β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7084 | . . . . . . . 8 β’ ((π:πβΆπ β§ π§ β π) β (πβπ§) β π) | |
2 | nmosetre.2 | . . . . . . . . 9 β’ π = (BaseSetβπ) | |
3 | nmosetre.4 | . . . . . . . . 9 β’ π = (normCVβπ) | |
4 | 2, 3 | nvcl 29914 | . . . . . . . 8 β’ ((π β NrmCVec β§ (πβπ§) β π) β (πβ(πβπ§)) β β) |
5 | 1, 4 | sylan2 594 | . . . . . . 7 β’ ((π β NrmCVec β§ (π:πβΆπ β§ π§ β π)) β (πβ(πβπ§)) β β) |
6 | 5 | anassrs 469 | . . . . . 6 β’ (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β (πβ(πβπ§)) β β) |
7 | eleq1 2822 | . . . . . 6 β’ (π₯ = (πβ(πβπ§)) β (π₯ β β β (πβ(πβπ§)) β β)) | |
8 | 6, 7 | imbitrrid 245 | . . . . 5 β’ (π₯ = (πβ(πβπ§)) β (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β π₯ β β)) |
9 | 8 | impcom 409 | . . . 4 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ π₯ = (πβ(πβπ§))) β π₯ β β) |
10 | 9 | adantrl 715 | . . 3 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))) β π₯ β β) |
11 | 10 | rexlimdva2 3158 | . 2 β’ ((π β NrmCVec β§ π:πβΆπ) β (βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§))) β π₯ β β)) |
12 | 11 | abssdv 4066 | 1 β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {cab 2710 βwrex 3071 β wss 3949 class class class wbr 5149 βΆwf 6540 βcfv 6544 βcr 11109 1c1 11111 β€ cle 11249 NrmCVeccnv 29837 BaseSetcba 29839 normCVcnmcv 29843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-1st 7975 df-2nd 7976 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-nmcv 29853 |
This theorem is referenced by: nmoxr 30019 nmooge0 30020 nmorepnf 30021 nmoolb 30024 nmoubi 30025 nmlno0lem 30046 nmopsetretHIL 31117 |
Copyright terms: Public domain | W3C validator |