![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 30777 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetre.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmosetre.4 | ⊢ 𝑁 = (normCV‘𝑊) |
Ref | Expression |
---|---|
nmosetre | ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋) → (𝑇‘𝑧) ∈ 𝑌) | |
2 | nmosetre.2 | . . . . . . . . 9 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmosetre.4 | . . . . . . . . 9 ⊢ 𝑁 = (normCV‘𝑊) | |
4 | 2, 3 | nvcl 30693 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑧) ∈ 𝑌) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
5 | 1, 4 | sylan2 592 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋)) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
6 | 5 | anassrs 467 | . . . . . 6 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
7 | eleq1 2832 | . . . . . 6 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇‘𝑧)) ∈ ℝ)) | |
8 | 6, 7 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ)) |
9 | 8 | impcom 407 | . . . 4 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ) |
10 | 9 | adantrl 715 | . . 3 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))) → 𝑥 ∈ ℝ) |
11 | 10 | rexlimdva2 3163 | . 2 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ)) |
12 | 11 | abssdv 4091 | 1 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 1c1 11185 ≤ cle 11325 NrmCVeccnv 30616 BaseSetcba 30618 normCVcnmcv 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: nmoxr 30798 nmooge0 30799 nmorepnf 30800 nmoolb 30803 nmoubi 30804 nmlno0lem 30825 nmopsetretHIL 31896 |
Copyright terms: Public domain | W3C validator |