MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   GIF version

Theorem nmosetre 30743
Description: The set in the supremum of the operator norm definition df-nmoo 30724 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2 𝑌 = (BaseSet‘𝑊)
nmosetre.4 𝑁 = (normCV𝑊)
Assertion
Ref Expression
nmosetre ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Distinct variable groups:   𝑥,𝑧,𝑇   𝑥,𝑊,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelcdm 7035 . . . . . . . 8 ((𝑇:𝑋𝑌𝑧𝑋) → (𝑇𝑧) ∈ 𝑌)
2 nmosetre.2 . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
3 nmosetre.4 . . . . . . . . 9 𝑁 = (normCV𝑊)
42, 3nvcl 30640 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ 𝑌) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
51, 4sylan2 593 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋𝑌𝑧𝑋)) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
65anassrs 467 . . . . . 6 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
7 eleq1 2816 . . . . . 6 (𝑥 = (𝑁‘(𝑇𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇𝑧)) ∈ ℝ))
86, 7imbitrrid 246 . . . . 5 (𝑥 = (𝑁‘(𝑇𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ))
98impcom 407 . . . 4 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ)
109adantrl 716 . . 3 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))) → 𝑥 ∈ ℝ)
1110rexlimdva2 3136 . 2 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ))
1211abssdv 4028 1 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  1c1 11045  cle 11185  NrmCVeccnv 30563  BaseSetcba 30565  normCVcnmcv 30569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579
This theorem is referenced by:  nmoxr  30745  nmooge0  30746  nmorepnf  30747  nmoolb  30750  nmoubi  30751  nmlno0lem  30772  nmopsetretHIL  31843
  Copyright terms: Public domain W3C validator