| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the operator norm definition df-nmoo 30724 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmosetre.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmosetre.4 | ⊢ 𝑁 = (normCV‘𝑊) |
| Ref | Expression |
|---|---|
| nmosetre | ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7035 | . . . . . . . 8 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋) → (𝑇‘𝑧) ∈ 𝑌) | |
| 2 | nmosetre.2 | . . . . . . . . 9 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmosetre.4 | . . . . . . . . 9 ⊢ 𝑁 = (normCV‘𝑊) | |
| 4 | 2, 3 | nvcl 30640 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑧) ∈ 𝑌) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 5 | 1, 4 | sylan2 593 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋)) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 6 | 5 | anassrs 467 | . . . . . 6 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 7 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇‘𝑧)) ∈ ℝ)) | |
| 8 | 6, 7 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ)) |
| 9 | 8 | impcom 407 | . . . 4 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ) |
| 10 | 9 | adantrl 716 | . . 3 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))) → 𝑥 ∈ ℝ) |
| 11 | 10 | rexlimdva2 3136 | . 2 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ)) |
| 12 | 11 | abssdv 4028 | 1 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 ℝcr 11043 1c1 11045 ≤ cle 11185 NrmCVeccnv 30563 BaseSetcba 30565 normCVcnmcv 30569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-1st 7947 df-2nd 7948 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-nmcv 30579 |
| This theorem is referenced by: nmoxr 30745 nmooge0 30746 nmorepnf 30747 nmoolb 30750 nmoubi 30751 nmlno0lem 30772 nmopsetretHIL 31843 |
| Copyright terms: Public domain | W3C validator |