![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 30583 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetre.2 | β’ π = (BaseSetβπ) |
nmosetre.4 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nmosetre | β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7096 | . . . . . . . 8 β’ ((π:πβΆπ β§ π§ β π) β (πβπ§) β π) | |
2 | nmosetre.2 | . . . . . . . . 9 β’ π = (BaseSetβπ) | |
3 | nmosetre.4 | . . . . . . . . 9 β’ π = (normCVβπ) | |
4 | 2, 3 | nvcl 30499 | . . . . . . . 8 β’ ((π β NrmCVec β§ (πβπ§) β π) β (πβ(πβπ§)) β β) |
5 | 1, 4 | sylan2 591 | . . . . . . 7 β’ ((π β NrmCVec β§ (π:πβΆπ β§ π§ β π)) β (πβ(πβπ§)) β β) |
6 | 5 | anassrs 466 | . . . . . 6 β’ (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β (πβ(πβπ§)) β β) |
7 | eleq1 2817 | . . . . . 6 β’ (π₯ = (πβ(πβπ§)) β (π₯ β β β (πβ(πβπ§)) β β)) | |
8 | 6, 7 | imbitrrid 245 | . . . . 5 β’ (π₯ = (πβ(πβπ§)) β (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β π₯ β β)) |
9 | 8 | impcom 406 | . . . 4 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ π₯ = (πβ(πβπ§))) β π₯ β β) |
10 | 9 | adantrl 714 | . . 3 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))) β π₯ β β) |
11 | 10 | rexlimdva2 3154 | . 2 β’ ((π β NrmCVec β§ π:πβΆπ) β (βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§))) β π₯ β β)) |
12 | 11 | abssdv 4065 | 1 β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {cab 2705 βwrex 3067 β wss 3949 class class class wbr 5152 βΆwf 6549 βcfv 6553 βcr 11147 1c1 11149 β€ cle 11289 NrmCVeccnv 30422 BaseSetcba 30424 normCVcnmcv 30428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-1st 8001 df-2nd 8002 df-vc 30397 df-nv 30430 df-va 30433 df-ba 30434 df-sm 30435 df-0v 30436 df-nmcv 30438 |
This theorem is referenced by: nmoxr 30604 nmooge0 30605 nmorepnf 30606 nmoolb 30609 nmoubi 30610 nmlno0lem 30631 nmopsetretHIL 31702 |
Copyright terms: Public domain | W3C validator |