MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   GIF version

Theorem nmosetre 30744
Description: The set in the supremum of the operator norm definition df-nmoo 30725 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2 𝑌 = (BaseSet‘𝑊)
nmosetre.4 𝑁 = (normCV𝑊)
Assertion
Ref Expression
nmosetre ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Distinct variable groups:   𝑥,𝑧,𝑇   𝑥,𝑊,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelcdm 7014 . . . . . . . 8 ((𝑇:𝑋𝑌𝑧𝑋) → (𝑇𝑧) ∈ 𝑌)
2 nmosetre.2 . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
3 nmosetre.4 . . . . . . . . 9 𝑁 = (normCV𝑊)
42, 3nvcl 30641 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ 𝑌) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
51, 4sylan2 593 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋𝑌𝑧𝑋)) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
65anassrs 467 . . . . . 6 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
7 eleq1 2819 . . . . . 6 (𝑥 = (𝑁‘(𝑇𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇𝑧)) ∈ ℝ))
86, 7imbitrrid 246 . . . . 5 (𝑥 = (𝑁‘(𝑇𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ))
98impcom 407 . . . 4 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ)
109adantrl 716 . . 3 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))) → 𝑥 ∈ ℝ)
1110rexlimdva2 3135 . 2 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ))
1211abssdv 4014 1 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3897   class class class wbr 5089  wf 6477  cfv 6481  cr 11005  1c1 11007  cle 11147  NrmCVeccnv 30564  BaseSetcba 30566  normCVcnmcv 30570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nmoxr  30746  nmooge0  30747  nmorepnf  30748  nmoolb  30751  nmoubi  30752  nmlno0lem  30773  nmopsetretHIL  31844
  Copyright terms: Public domain W3C validator