MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   GIF version

Theorem nmosetre 30745
Description: The set in the supremum of the operator norm definition df-nmoo 30726 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2 𝑌 = (BaseSet‘𝑊)
nmosetre.4 𝑁 = (normCV𝑊)
Assertion
Ref Expression
nmosetre ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Distinct variable groups:   𝑥,𝑧,𝑇   𝑥,𝑊,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelcdm 7071 . . . . . . . 8 ((𝑇:𝑋𝑌𝑧𝑋) → (𝑇𝑧) ∈ 𝑌)
2 nmosetre.2 . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
3 nmosetre.4 . . . . . . . . 9 𝑁 = (normCV𝑊)
42, 3nvcl 30642 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ 𝑌) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
51, 4sylan2 593 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋𝑌𝑧𝑋)) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
65anassrs 467 . . . . . 6 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
7 eleq1 2822 . . . . . 6 (𝑥 = (𝑁‘(𝑇𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇𝑧)) ∈ ℝ))
86, 7imbitrrid 246 . . . . 5 (𝑥 = (𝑁‘(𝑇𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ))
98impcom 407 . . . 4 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ)
109adantrl 716 . . 3 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))) → 𝑥 ∈ ℝ)
1110rexlimdva2 3143 . 2 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ))
1211abssdv 4043 1 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  wss 3926   class class class wbr 5119  wf 6527  cfv 6531  cr 11128  1c1 11130  cle 11270  NrmCVeccnv 30565  BaseSetcba 30567  normCVcnmcv 30571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-1st 7988  df-2nd 7989  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-nmcv 30581
This theorem is referenced by:  nmoxr  30747  nmooge0  30748  nmorepnf  30749  nmoolb  30752  nmoubi  30753  nmlno0lem  30774  nmopsetretHIL  31845
  Copyright terms: Public domain W3C validator