![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 30507 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetre.2 | β’ π = (BaseSetβπ) |
nmosetre.4 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nmosetre | β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7077 | . . . . . . . 8 β’ ((π:πβΆπ β§ π§ β π) β (πβπ§) β π) | |
2 | nmosetre.2 | . . . . . . . . 9 β’ π = (BaseSetβπ) | |
3 | nmosetre.4 | . . . . . . . . 9 β’ π = (normCVβπ) | |
4 | 2, 3 | nvcl 30423 | . . . . . . . 8 β’ ((π β NrmCVec β§ (πβπ§) β π) β (πβ(πβπ§)) β β) |
5 | 1, 4 | sylan2 592 | . . . . . . 7 β’ ((π β NrmCVec β§ (π:πβΆπ β§ π§ β π)) β (πβ(πβπ§)) β β) |
6 | 5 | anassrs 467 | . . . . . 6 β’ (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β (πβ(πβπ§)) β β) |
7 | eleq1 2815 | . . . . . 6 β’ (π₯ = (πβ(πβπ§)) β (π₯ β β β (πβ(πβπ§)) β β)) | |
8 | 6, 7 | imbitrrid 245 | . . . . 5 β’ (π₯ = (πβ(πβπ§)) β (((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β π₯ β β)) |
9 | 8 | impcom 407 | . . . 4 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ π₯ = (πβ(πβπ§))) β π₯ β β) |
10 | 9 | adantrl 713 | . . 3 β’ ((((π β NrmCVec β§ π:πβΆπ) β§ π§ β π) β§ ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))) β π₯ β β) |
11 | 10 | rexlimdva2 3151 | . 2 β’ ((π β NrmCVec β§ π:πβΆπ) β (βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§))) β π₯ β β)) |
12 | 11 | abssdv 4060 | 1 β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π ((πβπ§) β€ 1 β§ π₯ = (πβ(πβπ§)))} β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {cab 2703 βwrex 3064 β wss 3943 class class class wbr 5141 βΆwf 6533 βcfv 6537 βcr 11111 1c1 11113 β€ cle 11253 NrmCVeccnv 30346 BaseSetcba 30348 normCVcnmcv 30352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-1st 7974 df-2nd 7975 df-vc 30321 df-nv 30354 df-va 30357 df-ba 30358 df-sm 30359 df-0v 30360 df-nmcv 30362 |
This theorem is referenced by: nmoxr 30528 nmooge0 30529 nmorepnf 30530 nmoolb 30533 nmoubi 30534 nmlno0lem 30555 nmopsetretHIL 31626 |
Copyright terms: Public domain | W3C validator |