MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   GIF version

Theorem nmosetre 30646
Description: The set in the supremum of the operator norm definition df-nmoo 30627 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2 𝑌 = (BaseSet‘𝑊)
nmosetre.4 𝑁 = (normCV𝑊)
Assertion
Ref Expression
nmosetre ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Distinct variable groups:   𝑥,𝑧,𝑇   𝑥,𝑊,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelcdm 7090 . . . . . . . 8 ((𝑇:𝑋𝑌𝑧𝑋) → (𝑇𝑧) ∈ 𝑌)
2 nmosetre.2 . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
3 nmosetre.4 . . . . . . . . 9 𝑁 = (normCV𝑊)
42, 3nvcl 30543 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ 𝑌) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
51, 4sylan2 591 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋𝑌𝑧𝑋)) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
65anassrs 466 . . . . . 6 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
7 eleq1 2813 . . . . . 6 (𝑥 = (𝑁‘(𝑇𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇𝑧)) ∈ ℝ))
86, 7imbitrrid 245 . . . . 5 (𝑥 = (𝑁‘(𝑇𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ))
98impcom 406 . . . 4 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ)
109adantrl 714 . . 3 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))) → 𝑥 ∈ ℝ)
1110rexlimdva2 3146 . 2 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ))
1211abssdv 4061 1 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  wss 3944   class class class wbr 5149  wf 6545  cfv 6549  cr 11139  1c1 11141  cle 11281  NrmCVeccnv 30466  BaseSetcba 30468  normCVcnmcv 30472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-1st 7994  df-2nd 7995  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-nmcv 30482
This theorem is referenced by:  nmoxr  30648  nmooge0  30649  nmorepnf  30650  nmoolb  30653  nmoubi  30654  nmlno0lem  30675  nmopsetretHIL  31746
  Copyright terms: Public domain W3C validator