| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the operator norm definition df-nmoo 30725 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmosetre.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmosetre.4 | ⊢ 𝑁 = (normCV‘𝑊) |
| Ref | Expression |
|---|---|
| nmosetre | ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7014 | . . . . . . . 8 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋) → (𝑇‘𝑧) ∈ 𝑌) | |
| 2 | nmosetre.2 | . . . . . . . . 9 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmosetre.4 | . . . . . . . . 9 ⊢ 𝑁 = (normCV‘𝑊) | |
| 4 | 2, 3 | nvcl 30641 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑧) ∈ 𝑌) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 5 | 1, 4 | sylan2 593 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋)) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 6 | 5 | anassrs 467 | . . . . . 6 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
| 7 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇‘𝑧)) ∈ ℝ)) | |
| 8 | 6, 7 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ)) |
| 9 | 8 | impcom 407 | . . . 4 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ) |
| 10 | 9 | adantrl 716 | . . 3 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))) → 𝑥 ∈ ℝ) |
| 11 | 10 | rexlimdva2 3135 | . 2 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ)) |
| 12 | 11 | abssdv 4014 | 1 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 1c1 11007 ≤ cle 11147 NrmCVeccnv 30564 BaseSetcba 30566 normCVcnmcv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 |
| This theorem is referenced by: nmoxr 30746 nmooge0 30747 nmorepnf 30748 nmoolb 30751 nmoubi 30752 nmlno0lem 30773 nmopsetretHIL 31844 |
| Copyright terms: Public domain | W3C validator |