| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmosetn0 | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the operator norm definition df-nmoo 30647 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmosetn0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmosetn0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| nmosetn0.4 | ⊢ 𝑀 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nmosetn0 | ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetn0.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmosetn0.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | nvzcl 30536 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| 4 | nmosetn0.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑈) | |
| 5 | 2, 4 | nvz0 30570 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) = 0) |
| 6 | 0le1 11677 | . . . . 5 ⊢ 0 ≤ 1 | |
| 7 | 5, 6 | eqbrtrdi 5141 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) ≤ 1) |
| 8 | eqid 2729 | . . . 4 ⊢ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)) | |
| 9 | 7, 8 | jctir 520 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
| 10 | fveq2 6840 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑀‘𝑦) = (𝑀‘𝑍)) | |
| 11 | 10 | breq1d 5112 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑀‘𝑦) ≤ 1 ↔ (𝑀‘𝑍) ≤ 1)) |
| 12 | 2fveq3 6845 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑁‘(𝑇‘𝑦)) = (𝑁‘(𝑇‘𝑍))) | |
| 13 | 12 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
| 14 | 11, 13 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑍 → (((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍))))) |
| 15 | 14 | rspcev 3585 | . . 3 ⊢ ((𝑍 ∈ 𝑋 ∧ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 16 | 3, 9, 15 | syl2anc 584 | . 2 ⊢ (𝑈 ∈ NrmCVec → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 17 | fvex 6853 | . . 3 ⊢ (𝑁‘(𝑇‘𝑍)) ∈ V | |
| 18 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (𝑥 = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) | |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
| 20 | 19 | rexbidv 3157 | . . 3 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
| 21 | 17, 20 | elab 3643 | . 2 ⊢ ((𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 22 | 16, 21 | sylibr 234 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 0cc0 11044 1c1 11045 ≤ cle 11185 NrmCVeccnv 30486 BaseSetcba 30488 0veccn0v 30490 normCVcnmcv 30492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-grpo 30395 df-gid 30396 df-ginv 30397 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-nmcv 30502 |
| This theorem is referenced by: nmooge0 30669 nmorepnf 30670 |
| Copyright terms: Public domain | W3C validator |