Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmosetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 28641 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetn0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmosetn0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nmosetn0.4 | ⊢ 𝑀 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nmosetn0 | ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmosetn0.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmosetn0.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 28530 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | nmosetn0.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑈) | |
5 | 2, 4 | nvz0 28564 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) = 0) |
6 | 0le1 11214 | . . . . 5 ⊢ 0 ≤ 1 | |
7 | 5, 6 | eqbrtrdi 5075 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) ≤ 1) |
8 | eqid 2758 | . . . 4 ⊢ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)) | |
9 | 7, 8 | jctir 524 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
10 | fveq2 6663 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑀‘𝑦) = (𝑀‘𝑍)) | |
11 | 10 | breq1d 5046 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑀‘𝑦) ≤ 1 ↔ (𝑀‘𝑍) ≤ 1)) |
12 | 2fveq3 6668 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑁‘(𝑇‘𝑦)) = (𝑁‘(𝑇‘𝑍))) | |
13 | 12 | eqeq2d 2769 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
14 | 11, 13 | anbi12d 633 | . . . 4 ⊢ (𝑦 = 𝑍 → (((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍))))) |
15 | 14 | rspcev 3543 | . . 3 ⊢ ((𝑍 ∈ 𝑋 ∧ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
16 | 3, 9, 15 | syl2anc 587 | . 2 ⊢ (𝑈 ∈ NrmCVec → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
17 | fvex 6676 | . . 3 ⊢ (𝑁‘(𝑇‘𝑍)) ∈ V | |
18 | eqeq1 2762 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (𝑥 = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) | |
19 | 18 | anbi2d 631 | . . . 4 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
20 | 19 | rexbidv 3221 | . . 3 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
21 | 17, 20 | elab 3590 | . 2 ⊢ ((𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
22 | 16, 21 | sylibr 237 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 class class class wbr 5036 ‘cfv 6340 0cc0 10588 1c1 10589 ≤ cle 10727 NrmCVeccnv 28480 BaseSetcba 28482 0veccn0v 28484 normCVcnmcv 28486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-grpo 28389 df-gid 28390 df-ginv 28391 df-ablo 28441 df-vc 28455 df-nv 28488 df-va 28491 df-ba 28492 df-sm 28493 df-0v 28494 df-nmcv 28496 |
This theorem is referenced by: nmooge0 28663 nmorepnf 28664 |
Copyright terms: Public domain | W3C validator |