![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 30777 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetn0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmosetn0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nmosetn0.4 | ⊢ 𝑀 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nmosetn0 | ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmosetn0.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmosetn0.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 30666 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | nmosetn0.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑈) | |
5 | 2, 4 | nvz0 30700 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) = 0) |
6 | 0le1 11813 | . . . . 5 ⊢ 0 ≤ 1 | |
7 | 5, 6 | eqbrtrdi 5205 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) ≤ 1) |
8 | eqid 2740 | . . . 4 ⊢ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)) | |
9 | 7, 8 | jctir 520 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
10 | fveq2 6920 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑀‘𝑦) = (𝑀‘𝑍)) | |
11 | 10 | breq1d 5176 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑀‘𝑦) ≤ 1 ↔ (𝑀‘𝑍) ≤ 1)) |
12 | 2fveq3 6925 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑁‘(𝑇‘𝑦)) = (𝑁‘(𝑇‘𝑍))) | |
13 | 12 | eqeq2d 2751 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
14 | 11, 13 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝑍 → (((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍))))) |
15 | 14 | rspcev 3635 | . . 3 ⊢ ((𝑍 ∈ 𝑋 ∧ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
16 | 3, 9, 15 | syl2anc 583 | . 2 ⊢ (𝑈 ∈ NrmCVec → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
17 | fvex 6933 | . . 3 ⊢ (𝑁‘(𝑇‘𝑍)) ∈ V | |
18 | eqeq1 2744 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (𝑥 = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) | |
19 | 18 | anbi2d 629 | . . . 4 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
20 | 19 | rexbidv 3185 | . . 3 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
21 | 17, 20 | elab 3694 | . 2 ⊢ ((𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
22 | 16, 21 | sylibr 234 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 0cc0 11184 1c1 11185 ≤ cle 11325 NrmCVeccnv 30616 BaseSetcba 30618 0veccn0v 30620 normCVcnmcv 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: nmooge0 30799 nmorepnf 30800 |
Copyright terms: Public domain | W3C validator |