| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmosetn0 | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the operator norm definition df-nmoo 30689 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmosetn0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmosetn0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| nmosetn0.4 | ⊢ 𝑀 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nmosetn0 | ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetn0.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmosetn0.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | nvzcl 30578 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| 4 | nmosetn0.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑈) | |
| 5 | 2, 4 | nvz0 30612 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) = 0) |
| 6 | 0le1 11643 | . . . . 5 ⊢ 0 ≤ 1 | |
| 7 | 5, 6 | eqbrtrdi 5131 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) ≤ 1) |
| 8 | eqid 2729 | . . . 4 ⊢ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)) | |
| 9 | 7, 8 | jctir 520 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑀‘𝑦) = (𝑀‘𝑍)) | |
| 11 | 10 | breq1d 5102 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑀‘𝑦) ≤ 1 ↔ (𝑀‘𝑍) ≤ 1)) |
| 12 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑁‘(𝑇‘𝑦)) = (𝑁‘(𝑇‘𝑍))) | |
| 13 | 12 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
| 14 | 11, 13 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑍 → (((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍))))) |
| 15 | 14 | rspcev 3577 | . . 3 ⊢ ((𝑍 ∈ 𝑋 ∧ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 16 | 3, 9, 15 | syl2anc 584 | . 2 ⊢ (𝑈 ∈ NrmCVec → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 17 | fvex 6835 | . . 3 ⊢ (𝑁‘(𝑇‘𝑍)) ∈ V | |
| 18 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (𝑥 = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) | |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
| 20 | 19 | rexbidv 3153 | . . 3 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
| 21 | 17, 20 | elab 3635 | . 2 ⊢ ((𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
| 22 | 16, 21 | sylibr 234 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 0cc0 11009 1c1 11010 ≤ cle 11150 NrmCVeccnv 30528 BaseSetcba 30530 0veccn0v 30532 normCVcnmcv 30534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30437 df-gid 30438 df-ginv 30439 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 |
| This theorem is referenced by: nmooge0 30711 nmorepnf 30712 |
| Copyright terms: Public domain | W3C validator |