![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmoolb | Structured version Visualization version GIF version |
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoolb.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoolb.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoolb.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoolb.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoolb.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmoolb | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoolb.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | nmoolb.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
3 | 1, 2 | nmosetre 29604 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ) |
4 | ressxr 11196 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
5 | 3, 4 | sstrdi 3955 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
7 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝐿‘𝑦) = (𝐿‘𝐴)) | |
8 | 7 | breq1d 5114 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘𝐴) ≤ 1)) |
9 | 2fveq3 6845 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘𝐴))) | |
10 | 9 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
11 | 8, 10 | anbi12d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴))))) |
12 | eqid 2736 | . . . . . . 7 ⊢ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)) | |
13 | 12 | biantru 530 | . . . . . 6 ⊢ ((𝐿‘𝐴) ≤ 1 ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
14 | 11, 13 | bitr4di 288 | . . . . 5 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ (𝐿‘𝐴) ≤ 1)) |
15 | 14 | rspcev 3580 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
16 | fvex 6853 | . . . . 5 ⊢ (𝑀‘(𝑇‘𝐴)) ∈ V | |
17 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (𝑥 = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) | |
18 | 17 | anbi2d 629 | . . . . . 6 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
19 | 18 | rexbidv 3174 | . . . . 5 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
20 | 16, 19 | elab 3629 | . . . 4 ⊢ ((𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
21 | 15, 20 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) |
22 | supxrub 13240 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) | |
23 | 6, 21, 22 | syl2an 596 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
24 | nmoolb.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
25 | nmoolb.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
26 | nmoolb.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
27 | 24, 1, 25, 2, 26 | nmooval 29603 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
28 | 27 | adantr 481 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
29 | 23, 28 | breqtrrd 5132 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2713 ∃wrex 3072 ⊆ wss 3909 class class class wbr 5104 ⟶wf 6490 ‘cfv 6494 (class class class)co 7354 supcsup 9373 ℝcr 11047 1c1 11049 ℝ*cxr 11185 < clt 11186 ≤ cle 11187 NrmCVeccnv 29424 BaseSetcba 29426 normCVcnmcv 29430 normOpOLD cnmoo 29581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 ax-pre-sup 11126 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5530 df-po 5544 df-so 5545 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7918 df-2nd 7919 df-er 8645 df-map 8764 df-en 8881 df-dom 8882 df-sdom 8883 df-sup 9375 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-vc 29399 df-nv 29432 df-va 29435 df-ba 29436 df-sm 29437 df-0v 29438 df-nmcv 29440 df-nmoo 29585 |
This theorem is referenced by: nmblolbii 29639 |
Copyright terms: Public domain | W3C validator |