Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmoolb | Structured version Visualization version GIF version |
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoolb.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoolb.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoolb.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoolb.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoolb.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmoolb | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoolb.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | nmoolb.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
3 | 1, 2 | nmosetre 29126 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ) |
4 | ressxr 11019 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
5 | 3, 4 | sstrdi 3933 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
6 | 5 | 3adant1 1129 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝐿‘𝑦) = (𝐿‘𝐴)) | |
8 | 7 | breq1d 5084 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘𝐴) ≤ 1)) |
9 | 2fveq3 6779 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘𝐴))) | |
10 | 9 | eqeq2d 2749 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
11 | 8, 10 | anbi12d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴))))) |
12 | eqid 2738 | . . . . . . 7 ⊢ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)) | |
13 | 12 | biantru 530 | . . . . . 6 ⊢ ((𝐿‘𝐴) ≤ 1 ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
14 | 11, 13 | bitr4di 289 | . . . . 5 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ (𝐿‘𝐴) ≤ 1)) |
15 | 14 | rspcev 3561 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
16 | fvex 6787 | . . . . 5 ⊢ (𝑀‘(𝑇‘𝐴)) ∈ V | |
17 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (𝑥 = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) | |
18 | 17 | anbi2d 629 | . . . . . 6 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
19 | 18 | rexbidv 3226 | . . . . 5 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
20 | 16, 19 | elab 3609 | . . . 4 ⊢ ((𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
21 | 15, 20 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) |
22 | supxrub 13058 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) | |
23 | 6, 21, 22 | syl2an 596 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
24 | nmoolb.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
25 | nmoolb.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
26 | nmoolb.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
27 | 24, 1, 25, 2, 26 | nmooval 29125 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
28 | 27 | adantr 481 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
29 | 23, 28 | breqtrrd 5102 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 ℝcr 10870 1c1 10872 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 NrmCVeccnv 28946 BaseSetcba 28948 normCVcnmcv 28952 normOpOLD cnmoo 29103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 df-nmoo 29107 |
This theorem is referenced by: nmblolbii 29161 |
Copyright terms: Public domain | W3C validator |