MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 30024
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nmoolb.2 π‘Œ = (BaseSetβ€˜π‘Š)
nmoolb.l 𝐿 = (normCVβ€˜π‘ˆ)
nmoolb.m 𝑀 = (normCVβ€˜π‘Š)
nmoolb.3 𝑁 = (π‘ˆ normOpOLD π‘Š)
Assertion
Ref Expression
nmoolb (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ (π‘β€˜π‘‡))

Proof of Theorem nmoolb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 π‘Œ = (BaseSetβ€˜π‘Š)
2 nmoolb.m . . . . . 6 𝑀 = (normCVβ€˜π‘Š)
31, 2nmosetre 30017 . . . . 5 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
4 ressxr 11258 . . . . 5 ℝ βŠ† ℝ*
53, 4sstrdi 3995 . . . 4 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
653adant1 1131 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
7 fveq2 6892 . . . . . . . 8 (𝑦 = 𝐴 β†’ (πΏβ€˜π‘¦) = (πΏβ€˜π΄))
87breq1d 5159 . . . . . . 7 (𝑦 = 𝐴 β†’ ((πΏβ€˜π‘¦) ≀ 1 ↔ (πΏβ€˜π΄) ≀ 1))
9 2fveq3 6897 . . . . . . . 8 (𝑦 = 𝐴 β†’ (π‘€β€˜(π‘‡β€˜π‘¦)) = (π‘€β€˜(π‘‡β€˜π΄)))
109eqeq2d 2744 . . . . . . 7 (𝑦 = 𝐴 β†’ ((π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)) ↔ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))))
118, 10anbi12d 632 . . . . . 6 (𝑦 = 𝐴 β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ ((πΏβ€˜π΄) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄)))))
12 eqid 2733 . . . . . . 7 (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))
1312biantru 531 . . . . . 6 ((πΏβ€˜π΄) ≀ 1 ↔ ((πΏβ€˜π΄) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))))
1411, 13bitr4di 289 . . . . 5 (𝑦 = 𝐴 β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ (πΏβ€˜π΄) ≀ 1))
1514rspcev 3613 . . . 4 ((𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1) β†’ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
16 fvex 6905 . . . . 5 (π‘€β€˜(π‘‡β€˜π΄)) ∈ V
17 eqeq1 2737 . . . . . . 7 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)) ↔ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
1817anbi2d 630 . . . . . 6 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)))))
1918rexbidv 3179 . . . . 5 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)))))
2016, 19elab 3669 . . . 4 ((π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} ↔ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
2115, 20sylibr 233 . . 3 ((𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))})
22 supxrub 13303 . . 3 (({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ* ∧ (π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
236, 21, 22syl2an 597 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSetβ€˜π‘ˆ)
25 nmoolb.l . . . 4 𝐿 = (normCVβ€˜π‘ˆ)
26 nmoolb.3 . . . 4 𝑁 = (π‘ˆ normOpOLD π‘Š)
2724, 1, 25, 2, 26nmooval 30016 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
2827adantr 482 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
2923, 28breqtrrd 5177 1 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ (π‘β€˜π‘‡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆƒwrex 3071   βŠ† wss 3949   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  supcsup 9435  β„cr 11109  1c1 11111  β„*cxr 11247   < clt 11248   ≀ cle 11249  NrmCVeccnv 29837  BaseSetcba 29839  normCVcnmcv 29843   normOpOLD cnmoo 29994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-nmcv 29853  df-nmoo 29998
This theorem is referenced by:  nmblolbii  30052
  Copyright terms: Public domain W3C validator