MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 29034
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSet‘𝑈)
nmoolb.2 𝑌 = (BaseSet‘𝑊)
nmoolb.l 𝐿 = (normCV𝑈)
nmoolb.m 𝑀 = (normCV𝑊)
nmoolb.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoolb (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))

Proof of Theorem nmoolb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2 nmoolb.m . . . . . 6 𝑀 = (normCV𝑊)
31, 2nmosetre 29027 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ)
4 ressxr 10950 . . . . 5 ℝ ⊆ ℝ*
53, 4sstrdi 3929 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
653adant1 1128 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
7 fveq2 6756 . . . . . . . 8 (𝑦 = 𝐴 → (𝐿𝑦) = (𝐿𝐴))
87breq1d 5080 . . . . . . 7 (𝑦 = 𝐴 → ((𝐿𝑦) ≤ 1 ↔ (𝐿𝐴) ≤ 1))
9 2fveq3 6761 . . . . . . . 8 (𝑦 = 𝐴 → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇𝐴)))
109eqeq2d 2749 . . . . . . 7 (𝑦 = 𝐴 → ((𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
118, 10anbi12d 630 . . . . . 6 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴)))))
12 eqid 2738 . . . . . . 7 (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))
1312biantru 529 . . . . . 6 ((𝐿𝐴) ≤ 1 ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
1411, 13bitr4di 288 . . . . 5 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ (𝐿𝐴) ≤ 1))
1514rspcev 3552 . . . 4 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
16 fvex 6769 . . . . 5 (𝑀‘(𝑇𝐴)) ∈ V
17 eqeq1 2742 . . . . . . 7 (𝑥 = (𝑀‘(𝑇𝐴)) → (𝑥 = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
1817anbi2d 628 . . . . . 6 (𝑥 = (𝑀‘(𝑇𝐴)) → (((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
1918rexbidv 3225 . . . . 5 (𝑥 = (𝑀‘(𝑇𝐴)) → (∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2016, 19elab 3602 . . . 4 ((𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
2115, 20sylibr 233 . . 3 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))})
22 supxrub 12987 . . 3 (({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
236, 21, 22syl2an 595 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSet‘𝑈)
25 nmoolb.l . . . 4 𝐿 = (normCV𝑈)
26 nmoolb.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2724, 1, 25, 2, 26nmooval 29026 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2827adantr 480 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2923, 28breqtrrd 5098 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  1c1 10803  *cxr 10939   < clt 10940  cle 10941  NrmCVeccnv 28847  BaseSetcba 28849  normCVcnmcv 28853   normOpOLD cnmoo 29004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-nmoo 29008
This theorem is referenced by:  nmblolbii  29062
  Copyright terms: Public domain W3C validator