| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoolb | Structured version Visualization version GIF version | ||
| Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoolb.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoolb.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoolb.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoolb.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoolb.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmoolb | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoolb.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | nmoolb.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
| 3 | 1, 2 | nmosetre 30745 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ) |
| 4 | ressxr 11279 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 5 | 3, 4 | sstrdi 3971 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 7 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝐿‘𝑦) = (𝐿‘𝐴)) | |
| 8 | 7 | breq1d 5129 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘𝐴) ≤ 1)) |
| 9 | 2fveq3 6881 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘𝐴))) | |
| 10 | 9 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 11 | 8, 10 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴))))) |
| 12 | eqid 2735 | . . . . . . 7 ⊢ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)) | |
| 13 | 12 | biantru 529 | . . . . . 6 ⊢ ((𝐿‘𝐴) ≤ 1 ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 14 | 11, 13 | bitr4di 289 | . . . . 5 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ (𝐿‘𝐴) ≤ 1)) |
| 15 | 14 | rspcev 3601 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 16 | fvex 6889 | . . . . 5 ⊢ (𝑀‘(𝑇‘𝐴)) ∈ V | |
| 17 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (𝑥 = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) | |
| 18 | 17 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 19 | 18 | rexbidv 3164 | . . . . 5 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 20 | 16, 19 | elab 3658 | . . . 4 ⊢ ((𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 21 | 15, 20 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) |
| 22 | supxrub 13340 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 23 | 6, 21, 22 | syl2an 596 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 24 | nmoolb.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 25 | nmoolb.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 26 | nmoolb.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 27 | 24, 1, 25, 2, 26 | nmooval 30744 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 28 | 27 | adantr 480 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 29 | 23, 28 | breqtrrd 5147 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supcsup 9452 ℝcr 11128 1c1 11130 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 NrmCVeccnv 30565 BaseSetcba 30567 normCVcnmcv 30571 normOpOLD cnmoo 30722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-nmcv 30581 df-nmoo 30726 |
| This theorem is referenced by: nmblolbii 30780 |
| Copyright terms: Public domain | W3C validator |