MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 28231
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSet‘𝑈)
nmoolb.2 𝑌 = (BaseSet‘𝑊)
nmoolb.l 𝐿 = (normCV𝑈)
nmoolb.m 𝑀 = (normCV𝑊)
nmoolb.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoolb (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))

Proof of Theorem nmoolb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2 nmoolb.m . . . . . 6 𝑀 = (normCV𝑊)
31, 2nmosetre 28224 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ)
4 ressxr 10534 . . . . 5 ℝ ⊆ ℝ*
53, 4syl6ss 3903 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
653adant1 1123 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
7 fveq2 6541 . . . . . . . 8 (𝑦 = 𝐴 → (𝐿𝑦) = (𝐿𝐴))
87breq1d 4974 . . . . . . 7 (𝑦 = 𝐴 → ((𝐿𝑦) ≤ 1 ↔ (𝐿𝐴) ≤ 1))
9 2fveq3 6546 . . . . . . . 8 (𝑦 = 𝐴 → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇𝐴)))
109eqeq2d 2804 . . . . . . 7 (𝑦 = 𝐴 → ((𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
118, 10anbi12d 630 . . . . . 6 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴)))))
12 eqid 2794 . . . . . . 7 (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))
1312biantru 530 . . . . . 6 ((𝐿𝐴) ≤ 1 ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
1411, 13syl6bbr 290 . . . . 5 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ (𝐿𝐴) ≤ 1))
1514rspcev 3557 . . . 4 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
16 fvex 6554 . . . . 5 (𝑀‘(𝑇𝐴)) ∈ V
17 eqeq1 2798 . . . . . . 7 (𝑥 = (𝑀‘(𝑇𝐴)) → (𝑥 = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
1817anbi2d 628 . . . . . 6 (𝑥 = (𝑀‘(𝑇𝐴)) → (((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
1918rexbidv 3259 . . . . 5 (𝑥 = (𝑀‘(𝑇𝐴)) → (∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2016, 19elab 3604 . . . 4 ((𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
2115, 20sylibr 235 . . 3 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))})
22 supxrub 12567 . . 3 (({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
236, 21, 22syl2an 595 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSet‘𝑈)
25 nmoolb.l . . . 4 𝐿 = (normCV𝑈)
26 nmoolb.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2724, 1, 25, 2, 26nmooval 28223 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2827adantr 481 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2923, 28breqtrrd 4992 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2080  {cab 2774  wrex 3105  wss 3861   class class class wbr 4964  wf 6224  cfv 6228  (class class class)co 7019  supcsup 8753  cr 10385  1c1 10387  *cxr 10523   < clt 10524  cle 10525  NrmCVeccnv 28044  BaseSetcba 28046  normCVcnmcv 28050   normOpOLD cnmoo 28201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-po 5365  df-so 5366  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-1st 7548  df-2nd 7549  df-er 8142  df-map 8261  df-en 8361  df-dom 8362  df-sdom 8363  df-sup 8755  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-vc 28019  df-nv 28052  df-va 28055  df-ba 28056  df-sm 28057  df-0v 28058  df-nmcv 28060  df-nmoo 28205
This theorem is referenced by:  nmblolbii  28259
  Copyright terms: Public domain W3C validator