| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoolb | Structured version Visualization version GIF version | ||
| Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoolb.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoolb.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoolb.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoolb.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoolb.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmoolb | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoolb.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | nmoolb.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
| 3 | 1, 2 | nmosetre 30742 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ) |
| 4 | ressxr 11156 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 5 | 3, 4 | sstrdi 3947 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 7 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝐿‘𝑦) = (𝐿‘𝐴)) | |
| 8 | 7 | breq1d 5101 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘𝐴) ≤ 1)) |
| 9 | 2fveq3 6827 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘𝐴))) | |
| 10 | 9 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 11 | 8, 10 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴))))) |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)) | |
| 13 | 12 | biantru 529 | . . . . . 6 ⊢ ((𝐿‘𝐴) ≤ 1 ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 14 | 11, 13 | bitr4di 289 | . . . . 5 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ (𝐿‘𝐴) ≤ 1)) |
| 15 | 14 | rspcev 3577 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 16 | fvex 6835 | . . . . 5 ⊢ (𝑀‘(𝑇‘𝐴)) ∈ V | |
| 17 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (𝑥 = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) | |
| 18 | 17 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 19 | 18 | rexbidv 3156 | . . . . 5 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 20 | 16, 19 | elab 3635 | . . . 4 ⊢ ((𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 21 | 15, 20 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) |
| 22 | supxrub 13223 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 23 | 6, 21, 22 | syl2an 596 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 24 | nmoolb.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 25 | nmoolb.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 26 | nmoolb.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 27 | 24, 1, 25, 2, 26 | nmooval 30741 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 28 | 27 | adantr 480 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 29 | 23, 28 | breqtrrd 5119 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℝcr 11005 1c1 11007 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 NrmCVeccnv 30562 BaseSetcba 30564 normCVcnmcv 30568 normOpOLD cnmoo 30719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-vc 30537 df-nv 30570 df-va 30573 df-ba 30574 df-sm 30575 df-0v 30576 df-nmcv 30578 df-nmoo 30723 |
| This theorem is referenced by: nmblolbii 30777 |
| Copyright terms: Public domain | W3C validator |