| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoolb | Structured version Visualization version GIF version | ||
| Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoolb.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoolb.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoolb.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoolb.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoolb.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmoolb | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoolb.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | nmoolb.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
| 3 | 1, 2 | nmosetre 30693 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ) |
| 4 | ressxr 11218 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 5 | 3, 4 | sstrdi 3959 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 7 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝐿‘𝑦) = (𝐿‘𝐴)) | |
| 8 | 7 | breq1d 5117 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘𝐴) ≤ 1)) |
| 9 | 2fveq3 6863 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘𝐴))) | |
| 10 | 9 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 11 | 8, 10 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴))))) |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)) | |
| 13 | 12 | biantru 529 | . . . . . 6 ⊢ ((𝐿‘𝐴) ≤ 1 ↔ ((𝐿‘𝐴) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝐴)))) |
| 14 | 11, 13 | bitr4di 289 | . . . . 5 ⊢ (𝑦 = 𝐴 → (((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))) ↔ (𝐿‘𝐴) ≤ 1)) |
| 15 | 14 | rspcev 3588 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 16 | fvex 6871 | . . . . 5 ⊢ (𝑀‘(𝑇‘𝐴)) ∈ V | |
| 17 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (𝑥 = (𝑀‘(𝑇‘𝑦)) ↔ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) | |
| 18 | 17 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 19 | 18 | rexbidv 3157 | . . . . 5 ⊢ (𝑥 = (𝑀‘(𝑇‘𝐴)) → (∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦))))) |
| 20 | 16, 19 | elab 3646 | . . . 4 ⊢ ((𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ (𝑀‘(𝑇‘𝐴)) = (𝑀‘(𝑇‘𝑦)))) |
| 21 | 15, 20 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1) → (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) |
| 22 | supxrub 13284 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 23 | 6, 21, 22 | syl2an 596 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 24 | nmoolb.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 25 | nmoolb.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 26 | nmoolb.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 27 | 24, 1, 25, 2, 26 | nmooval 30692 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 28 | 27 | adantr 480 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 29 | 23, 28 | breqtrrd 5135 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℝcr 11067 1c1 11069 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 NrmCVeccnv 30513 BaseSetcba 30515 normCVcnmcv 30519 normOpOLD cnmoo 30670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 df-nmoo 30674 |
| This theorem is referenced by: nmblolbii 30728 |
| Copyright terms: Public domain | W3C validator |