MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 30594
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nmoolb.2 π‘Œ = (BaseSetβ€˜π‘Š)
nmoolb.l 𝐿 = (normCVβ€˜π‘ˆ)
nmoolb.m 𝑀 = (normCVβ€˜π‘Š)
nmoolb.3 𝑁 = (π‘ˆ normOpOLD π‘Š)
Assertion
Ref Expression
nmoolb (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ (π‘β€˜π‘‡))

Proof of Theorem nmoolb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 π‘Œ = (BaseSetβ€˜π‘Š)
2 nmoolb.m . . . . . 6 𝑀 = (normCVβ€˜π‘Š)
31, 2nmosetre 30587 . . . . 5 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
4 ressxr 11289 . . . . 5 ℝ βŠ† ℝ*
53, 4sstrdi 3992 . . . 4 ((π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
653adant1 1128 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
7 fveq2 6897 . . . . . . . 8 (𝑦 = 𝐴 β†’ (πΏβ€˜π‘¦) = (πΏβ€˜π΄))
87breq1d 5158 . . . . . . 7 (𝑦 = 𝐴 β†’ ((πΏβ€˜π‘¦) ≀ 1 ↔ (πΏβ€˜π΄) ≀ 1))
9 2fveq3 6902 . . . . . . . 8 (𝑦 = 𝐴 β†’ (π‘€β€˜(π‘‡β€˜π‘¦)) = (π‘€β€˜(π‘‡β€˜π΄)))
109eqeq2d 2739 . . . . . . 7 (𝑦 = 𝐴 β†’ ((π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)) ↔ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))))
118, 10anbi12d 631 . . . . . 6 (𝑦 = 𝐴 β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ ((πΏβ€˜π΄) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄)))))
12 eqid 2728 . . . . . . 7 (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))
1312biantru 529 . . . . . 6 ((πΏβ€˜π΄) ≀ 1 ↔ ((πΏβ€˜π΄) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π΄))))
1411, 13bitr4di 289 . . . . 5 (𝑦 = 𝐴 β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ (πΏβ€˜π΄) ≀ 1))
1514rspcev 3609 . . . 4 ((𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1) β†’ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
16 fvex 6910 . . . . 5 (π‘€β€˜(π‘‡β€˜π΄)) ∈ V
17 eqeq1 2732 . . . . . . 7 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)) ↔ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
1817anbi2d 629 . . . . . 6 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)))))
1918rexbidv 3175 . . . . 5 (π‘₯ = (π‘€β€˜(π‘‡β€˜π΄)) β†’ (βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦)))))
2016, 19elab 3667 . . . 4 ((π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} ↔ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ (π‘€β€˜(π‘‡β€˜π΄)) = (π‘€β€˜(π‘‡β€˜π‘¦))))
2115, 20sylibr 233 . . 3 ((𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))})
22 supxrub 13336 . . 3 (({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ* ∧ (π‘€β€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
236, 21, 22syl2an 595 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSetβ€˜π‘ˆ)
25 nmoolb.l . . . 4 𝐿 = (normCVβ€˜π‘ˆ)
26 nmoolb.3 . . . 4 𝑁 = (π‘ˆ normOpOLD π‘Š)
2724, 1, 25, 2, 26nmooval 30586 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
2827adantr 480 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ 𝑋 ((πΏβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
2923, 28breqtrrd 5176 1 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) ∧ (𝐴 ∈ 𝑋 ∧ (πΏβ€˜π΄) ≀ 1)) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ (π‘β€˜π‘‡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  {cab 2705  βˆƒwrex 3067   βŠ† wss 3947   class class class wbr 5148  βŸΆwf 6544  β€˜cfv 6548  (class class class)co 7420  supcsup 9464  β„cr 11138  1c1 11140  β„*cxr 11278   < clt 11279   ≀ cle 11280  NrmCVeccnv 30407  BaseSetcba 30409  normCVcnmcv 30413   normOpOLD cnmoo 30564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-vc 30382  df-nv 30415  df-va 30418  df-ba 30419  df-sm 30420  df-0v 30421  df-nmcv 30423  df-nmoo 30568
This theorem is referenced by:  nmblolbii  30622
  Copyright terms: Public domain W3C validator