MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 30803
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSet‘𝑈)
nmoolb.2 𝑌 = (BaseSet‘𝑊)
nmoolb.l 𝐿 = (normCV𝑈)
nmoolb.m 𝑀 = (normCV𝑊)
nmoolb.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoolb (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))

Proof of Theorem nmoolb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2 nmoolb.m . . . . . 6 𝑀 = (normCV𝑊)
31, 2nmosetre 30796 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ)
4 ressxr 11334 . . . . 5 ℝ ⊆ ℝ*
53, 4sstrdi 4021 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
653adant1 1130 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
7 fveq2 6920 . . . . . . . 8 (𝑦 = 𝐴 → (𝐿𝑦) = (𝐿𝐴))
87breq1d 5176 . . . . . . 7 (𝑦 = 𝐴 → ((𝐿𝑦) ≤ 1 ↔ (𝐿𝐴) ≤ 1))
9 2fveq3 6925 . . . . . . . 8 (𝑦 = 𝐴 → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇𝐴)))
109eqeq2d 2751 . . . . . . 7 (𝑦 = 𝐴 → ((𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
118, 10anbi12d 631 . . . . . 6 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴)))))
12 eqid 2740 . . . . . . 7 (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))
1312biantru 529 . . . . . 6 ((𝐿𝐴) ≤ 1 ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
1411, 13bitr4di 289 . . . . 5 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ (𝐿𝐴) ≤ 1))
1514rspcev 3635 . . . 4 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
16 fvex 6933 . . . . 5 (𝑀‘(𝑇𝐴)) ∈ V
17 eqeq1 2744 . . . . . . 7 (𝑥 = (𝑀‘(𝑇𝐴)) → (𝑥 = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
1817anbi2d 629 . . . . . 6 (𝑥 = (𝑀‘(𝑇𝐴)) → (((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
1918rexbidv 3185 . . . . 5 (𝑥 = (𝑀‘(𝑇𝐴)) → (∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2016, 19elab 3694 . . . 4 ((𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
2115, 20sylibr 234 . . 3 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))})
22 supxrub 13386 . . 3 (({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
236, 21, 22syl2an 595 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSet‘𝑈)
25 nmoolb.l . . . 4 𝐿 = (normCV𝑈)
26 nmoolb.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2724, 1, 25, 2, 26nmooval 30795 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2827adantr 480 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2923, 28breqtrrd 5194 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  1c1 11185  *cxr 11323   < clt 11324  cle 11325  NrmCVeccnv 30616  BaseSetcba 30618  normCVcnmcv 30622   normOpOLD cnmoo 30773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-nmoo 30777
This theorem is referenced by:  nmblolbii  30831
  Copyright terms: Public domain W3C validator