MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 30800
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSet‘𝑈)
nmoolb.2 𝑌 = (BaseSet‘𝑊)
nmoolb.l 𝐿 = (normCV𝑈)
nmoolb.m 𝑀 = (normCV𝑊)
nmoolb.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoolb (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))

Proof of Theorem nmoolb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2 nmoolb.m . . . . . 6 𝑀 = (normCV𝑊)
31, 2nmosetre 30793 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ)
4 ressxr 11303 . . . . 5 ℝ ⊆ ℝ*
53, 4sstrdi 4008 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
653adant1 1129 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
7 fveq2 6907 . . . . . . . 8 (𝑦 = 𝐴 → (𝐿𝑦) = (𝐿𝐴))
87breq1d 5158 . . . . . . 7 (𝑦 = 𝐴 → ((𝐿𝑦) ≤ 1 ↔ (𝐿𝐴) ≤ 1))
9 2fveq3 6912 . . . . . . . 8 (𝑦 = 𝐴 → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇𝐴)))
109eqeq2d 2746 . . . . . . 7 (𝑦 = 𝐴 → ((𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
118, 10anbi12d 632 . . . . . 6 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴)))))
12 eqid 2735 . . . . . . 7 (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))
1312biantru 529 . . . . . 6 ((𝐿𝐴) ≤ 1 ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
1411, 13bitr4di 289 . . . . 5 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ (𝐿𝐴) ≤ 1))
1514rspcev 3622 . . . 4 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
16 fvex 6920 . . . . 5 (𝑀‘(𝑇𝐴)) ∈ V
17 eqeq1 2739 . . . . . . 7 (𝑥 = (𝑀‘(𝑇𝐴)) → (𝑥 = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
1817anbi2d 630 . . . . . 6 (𝑥 = (𝑀‘(𝑇𝐴)) → (((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
1918rexbidv 3177 . . . . 5 (𝑥 = (𝑀‘(𝑇𝐴)) → (∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2016, 19elab 3681 . . . 4 ((𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
2115, 20sylibr 234 . . 3 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))})
22 supxrub 13363 . . 3 (({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
236, 21, 22syl2an 596 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
24 nmoolb.1 . . . 4 𝑋 = (BaseSet‘𝑈)
25 nmoolb.l . . . 4 𝐿 = (normCV𝑈)
26 nmoolb.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2724, 1, 25, 2, 26nmooval 30792 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2827adantr 480 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2923, 28breqtrrd 5176 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cr 11152  1c1 11154  *cxr 11292   < clt 11293  cle 11294  NrmCVeccnv 30613  BaseSetcba 30615  normCVcnmcv 30619   normOpOLD cnmoo 30770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-nmoo 30774
This theorem is referenced by:  nmblolbii  30828
  Copyright terms: Public domain W3C validator