MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmorepnf Structured version   Visualization version   GIF version

Theorem nmorepnf 28547
Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmorepnf ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))

Proof of Theorem nmorepnf
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
2 eqid 2823 . . . . 5 (normCV𝑊) = (normCV𝑊)
31, 2nmosetre 28543 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
4 nmoxr.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
5 eqid 2823 . . . . . 6 (0vec𝑈) = (0vec𝑈)
6 eqid 2823 . . . . . 6 (normCV𝑈) = (normCV𝑈)
74, 5, 6nmosetn0 28544 . . . . 5 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
87ne0d 4303 . . . 4 (𝑈 ∈ NrmCVec → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ≠ ∅)
9 supxrre2 12727 . . . 4 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ≠ ∅) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
103, 8, 9syl2anr 598 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌)) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
11103impb 1111 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
12 nmoxr.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
134, 1, 6, 2, 12nmooval 28542 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
1413eleq1d 2899 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ))
1513neeq1d 3077 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ≠ +∞ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
1611, 14, 153bitr4d 313 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wrex 3141  wss 3938  c0 4293   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  1c1 10540  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  NrmCVeccnv 28363  BaseSetcba 28365  0veccn0v 28367  normCVcnmcv 28369   normOpOLD cnmoo 28520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379  df-nmoo 28524
This theorem is referenced by:  nmoreltpnf  28548  nmogtmnf  28549  nmounbi  28555
  Copyright terms: Public domain W3C validator