![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmorepnf | Structured version Visualization version GIF version |
Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | β’ π = (BaseSetβπ) |
nmoxr.2 | β’ π = (BaseSetβπ) |
nmoxr.3 | β’ π = (π normOpOLD π) |
Ref | Expression |
---|---|
nmorepnf | β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β ((πβπ) β β β (πβπ) β +β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoxr.2 | . . . . 5 β’ π = (BaseSetβπ) | |
2 | eqid 2733 | . . . . 5 β’ (normCVβπ) = (normCVβπ) | |
3 | 1, 2 | nmosetre 30017 | . . . 4 β’ ((π β NrmCVec β§ π:πβΆπ) β {π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))} β β) |
4 | nmoxr.1 | . . . . . 6 β’ π = (BaseSetβπ) | |
5 | eqid 2733 | . . . . . 6 β’ (0vecβπ) = (0vecβπ) | |
6 | eqid 2733 | . . . . . 6 β’ (normCVβπ) = (normCVβπ) | |
7 | 4, 5, 6 | nmosetn0 30018 | . . . . 5 β’ (π β NrmCVec β ((normCVβπ)β(πβ(0vecβπ))) β {π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}) |
8 | 7 | ne0d 4336 | . . . 4 β’ (π β NrmCVec β {π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))} β β ) |
9 | supxrre2 13310 | . . . 4 β’ (({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))} β β β§ {π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))} β β ) β (sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β β β sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β +β)) | |
10 | 3, 8, 9 | syl2anr 598 | . . 3 β’ ((π β NrmCVec β§ (π β NrmCVec β§ π:πβΆπ)) β (sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β β β sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β +β)) |
11 | 10 | 3impb 1116 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β (sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β β β sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β +β)) |
12 | nmoxr.3 | . . . 4 β’ π = (π normOpOLD π) | |
13 | 4, 1, 6, 2, 12 | nmooval 30016 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β (πβπ) = sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < )) |
14 | 13 | eleq1d 2819 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β ((πβπ) β β β sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β β)) |
15 | 13 | neeq1d 3001 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β ((πβπ) β +β β sup({π₯ β£ βπ§ β π (((normCVβπ)βπ§) β€ 1 β§ π₯ = ((normCVβπ)β(πβπ§)))}, β*, < ) β +β)) |
16 | 11, 14, 15 | 3bitr4d 311 | 1 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β ((πβπ) β β β (πβπ) β +β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 {cab 2710 β wne 2941 βwrex 3071 β wss 3949 β c0 4323 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7409 supcsup 9435 βcr 11109 1c1 11111 +βcpnf 11245 β*cxr 11247 < clt 11248 β€ cle 11249 NrmCVeccnv 29837 BaseSetcba 29839 0veccn0v 29841 normCVcnmcv 29843 normOpOLD cnmoo 29994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-grpo 29746 df-gid 29747 df-ginv 29748 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-nmcv 29853 df-nmoo 29998 |
This theorem is referenced by: nmoreltpnf 30022 nmogtmnf 30023 nmounbi 30029 |
Copyright terms: Public domain | W3C validator |