![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmeq0 | Structured version Visualization version GIF version |
Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmeq0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvmeq0.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
nvmeq0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvmeq0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵) = 𝑍 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvmeq0.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvmeq0.3 | . . . . . . 7 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
3 | 1, 2 | nvmcl 30449 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) ∈ 𝑋) |
4 | 3 | 3expb 1118 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) ∈ 𝑋) |
5 | nvmeq0.5 | . . . . . . 7 ⊢ 𝑍 = (0vec‘𝑈) | |
6 | 1, 5 | nvzcl 30437 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑍 ∈ 𝑋) |
8 | simprr 772 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
9 | 4, 7, 8 | 3jca 1126 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑀𝐵) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
10 | eqid 2727 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
11 | 1, 10 | nvrcan 30427 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ ((𝐴𝑀𝐵) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐴𝑀𝐵)( +𝑣 ‘𝑈)𝐵) = (𝑍( +𝑣 ‘𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍)) |
12 | 9, 11 | syldan 590 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐴𝑀𝐵)( +𝑣 ‘𝑈)𝐵) = (𝑍( +𝑣 ‘𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍)) |
13 | 12 | 3impb 1113 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴𝑀𝐵)( +𝑣 ‘𝑈)𝐵) = (𝑍( +𝑣 ‘𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍)) |
14 | 1, 10, 2 | nvnpcan 30459 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵)( +𝑣 ‘𝑈)𝐵) = 𝐴) |
15 | 1, 10, 5 | nv0lid 30439 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑍( +𝑣 ‘𝑈)𝐵) = 𝐵) |
16 | 15 | 3adant2 1129 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑍( +𝑣 ‘𝑈)𝐵) = 𝐵) |
17 | 14, 16 | eqeq12d 2743 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴𝑀𝐵)( +𝑣 ‘𝑈)𝐵) = (𝑍( +𝑣 ‘𝑈)𝐵) ↔ 𝐴 = 𝐵)) |
18 | 13, 17 | bitr3d 281 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵) = 𝑍 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 NrmCVeccnv 30387 +𝑣 cpv 30388 BaseSetcba 30389 0veccn0v 30391 −𝑣 cnsb 30392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-grpo 30296 df-gid 30297 df-ginv 30298 df-gdiv 30299 df-ablo 30348 df-vc 30362 df-nv 30395 df-va 30398 df-ba 30399 df-sm 30400 df-0v 30401 df-vs 30402 df-nmcv 30403 |
This theorem is referenced by: nvmid 30462 ip2eqi 30659 |
Copyright terms: Public domain | W3C validator |