Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0m0 | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) |
Ref | Expression |
---|---|
oe0m0 | ⊢ (∅ ↑o ∅) = 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6304 | . . 3 ⊢ ∅ ∈ On | |
2 | oe0m 8310 | . . 3 ⊢ (∅ ∈ On → (∅ ↑o ∅) = (1o ∖ ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (∅ ↑o ∅) = (1o ∖ ∅) |
4 | dif0 4303 | . 2 ⊢ (1o ∖ ∅) = 1o | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ (∅ ↑o ∅) = 1o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 Oncon0 6251 (class class class)co 7255 1oc1o 8260 ↑o coe 8266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oexp 8273 |
This theorem is referenced by: oe0 8314 oev2 8315 oesuclem 8317 oecl 8329 oeoa 8390 oeoe 8392 |
Copyright terms: Public domain | W3C validator |