MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m0 Structured version   Visualization version   GIF version

Theorem oe0m0 8484
Description: Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.)
Assertion
Ref Expression
oe0m0 (∅ ↑o ∅) = 1o

Proof of Theorem oe0m0
StepHypRef Expression
1 0elon 6387 . . 3 ∅ ∈ On
2 oe0m 8482 . . 3 (∅ ∈ On → (∅ ↑o ∅) = (1o ∖ ∅))
31, 2ax-mp 5 . 2 (∅ ↑o ∅) = (1o ∖ ∅)
4 dif0 4341 . 2 (1o ∖ ∅) = 1o
53, 4eqtri 2752 1 (∅ ↑o ∅) = 1o
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3911  c0 4296  Oncon0 6332  (class class class)co 7387  1oc1o 8427  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oexp 8440
This theorem is referenced by:  oe0  8486  oev2  8487  oesuclem  8489  oecl  8501  oeoa  8561  oeoe  8563
  Copyright terms: Public domain W3C validator