| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0m0 | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) |
| Ref | Expression |
|---|---|
| oe0m0 | ⊢ (∅ ↑o ∅) = 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6407 | . . 3 ⊢ ∅ ∈ On | |
| 2 | oe0m 8530 | . . 3 ⊢ (∅ ∈ On → (∅ ↑o ∅) = (1o ∖ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (∅ ↑o ∅) = (1o ∖ ∅) |
| 4 | dif0 4353 | . 2 ⊢ (1o ∖ ∅) = 1o | |
| 5 | 3, 4 | eqtri 2758 | 1 ⊢ (∅ ↑o ∅) = 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∅c0 4308 Oncon0 6352 (class class class)co 7405 1oc1o 8473 ↑o coe 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oexp 8486 |
| This theorem is referenced by: oe0 8534 oev2 8535 oesuclem 8537 oecl 8549 oeoa 8609 oeoe 8611 |
| Copyright terms: Public domain | W3C validator |