MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m0 Structured version   Visualization version   GIF version

Theorem oe0m0 8176
Description: Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.)
Assertion
Ref Expression
oe0m0 (∅ ↑o ∅) = 1o

Proof of Theorem oe0m0
StepHypRef Expression
1 0elon 6225 . . 3 ∅ ∈ On
2 oe0m 8174 . . 3 (∅ ∈ On → (∅ ↑o ∅) = (1o ∖ ∅))
31, 2ax-mp 5 . 2 (∅ ↑o ∅) = (1o ∖ ∅)
4 dif0 4261 . 2 (1o ∖ ∅) = 1o
53, 4eqtri 2761 1 (∅ ↑o ∅) = 1o
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2114  cdif 3840  c0 4211  Oncon0 6172  (class class class)co 7170  1oc1o 8124  o coe 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oexp 8137
This theorem is referenced by:  oe0  8178  oev2  8179  oesuclem  8181  oecl  8193  oeoa  8254  oeoe  8256
  Copyright terms: Public domain W3C validator