Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsc0N Structured version   Visualization version   GIF version

Theorem lflsc0N 35158
Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lflsc0.v 𝑉 = (Base‘𝑊)
lflsc0.d 𝐷 = (Scalar‘𝑊)
lflsc0.k 𝐾 = (Base‘𝐷)
lflsc0.t · = (.r𝐷)
lflsc0.o 0 = (0g𝐷)
lflsc0.w (𝜑𝑊 ∈ LMod)
lflsc0.x (𝜑𝑋𝐾)
Assertion
Ref Expression
lflsc0N (𝜑 → ((𝑉 × { 0 }) ∘𝑓 · (𝑉 × {𝑋})) = (𝑉 × { 0 }))

Proof of Theorem lflsc0N
StepHypRef Expression
1 lflsc0.v . . . . 5 𝑉 = (Base‘𝑊)
21fvexi 6447 . . . 4 𝑉 ∈ V
32a1i 11 . . 3 (𝜑𝑉 ∈ V)
4 lflsc0.w . . . . 5 (𝜑𝑊 ∈ LMod)
5 lflsc0.d . . . . . 6 𝐷 = (Scalar‘𝑊)
65lmodring 19227 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
74, 6syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
8 lflsc0.k . . . . 5 𝐾 = (Base‘𝐷)
9 lflsc0.o . . . . 5 0 = (0g𝐷)
108, 9ring0cl 18923 . . . 4 (𝐷 ∈ Ring → 0𝐾)
117, 10syl 17 . . 3 (𝜑0𝐾)
12 lflsc0.x . . 3 (𝜑𝑋𝐾)
133, 11, 12ofc12 7182 . 2 (𝜑 → ((𝑉 × { 0 }) ∘𝑓 · (𝑉 × {𝑋})) = (𝑉 × {( 0 · 𝑋)}))
14 lflsc0.t . . . . . 6 · = (.r𝐷)
158, 14, 9ringlz 18941 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑋𝐾) → ( 0 · 𝑋) = 0 )
167, 12, 15syl2anc 581 . . . 4 (𝜑 → ( 0 · 𝑋) = 0 )
1716sneqd 4409 . . 3 (𝜑 → {( 0 · 𝑋)} = { 0 })
1817xpeq2d 5372 . 2 (𝜑 → (𝑉 × {( 0 · 𝑋)}) = (𝑉 × { 0 }))
1913, 18eqtrd 2861 1 (𝜑 → ((𝑉 × { 0 }) ∘𝑓 · (𝑉 × {𝑋})) = (𝑉 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  Vcvv 3414  {csn 4397   × cxp 5340  cfv 6123  (class class class)co 6905  𝑓 cof 7155  Basecbs 16222  .rcmulr 16306  Scalarcsca 16308  0gc0g 16453  Ringcrg 18901  LModclmod 19219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-mgp 18844  df-ring 18903  df-lmod 19221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator