Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflsc0N | Structured version Visualization version GIF version |
Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lflsc0.v | ⊢ 𝑉 = (Base‘𝑊) |
lflsc0.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflsc0.k | ⊢ 𝐾 = (Base‘𝐷) |
lflsc0.t | ⊢ · = (.r‘𝐷) |
lflsc0.o | ⊢ 0 = (0g‘𝐷) |
lflsc0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflsc0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
Ref | Expression |
---|---|
lflsc0N | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflsc0.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6848 | . . . 4 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflsc0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflsc0.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
6 | 5 | lmodring 20241 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Ring) |
8 | lflsc0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
9 | lflsc0.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
10 | 8, 9 | ring0cl 19907 | . . . 4 ⊢ (𝐷 ∈ Ring → 0 ∈ 𝐾) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐾) |
12 | lflsc0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | 3, 11, 12 | ofc12 7632 | . 2 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × {( 0 · 𝑋)})) |
14 | lflsc0.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
15 | 8, 14, 9 | ringlz 19925 | . . . . 5 ⊢ ((𝐷 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ( 0 · 𝑋) = 0 ) |
16 | 7, 12, 15 | syl2anc 585 | . . . 4 ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) |
17 | 16 | sneqd 4593 | . . 3 ⊢ (𝜑 → {( 0 · 𝑋)} = { 0 }) |
18 | 17 | xpeq2d 5657 | . 2 ⊢ (𝜑 → (𝑉 × {( 0 · 𝑋)}) = (𝑉 × { 0 })) |
19 | 13, 18 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3443 {csn 4581 × cxp 5625 ‘cfv 6488 (class class class)co 7346 ∘f cof 7602 Basecbs 17014 .rcmulr 17065 Scalarcsca 17067 0gc0g 17252 Ringcrg 19882 LModclmod 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7604 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-plusg 17077 df-0g 17254 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-grp 18681 df-minusg 18682 df-mgp 19820 df-ring 19884 df-lmod 20235 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |