Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflsc0N | Structured version Visualization version GIF version |
Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lflsc0.v | ⊢ 𝑉 = (Base‘𝑊) |
lflsc0.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflsc0.k | ⊢ 𝐾 = (Base‘𝐷) |
lflsc0.t | ⊢ · = (.r‘𝐷) |
lflsc0.o | ⊢ 0 = (0g‘𝐷) |
lflsc0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflsc0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
Ref | Expression |
---|---|
lflsc0N | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflsc0.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6788 | . . . 4 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflsc0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflsc0.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
6 | 5 | lmodring 20131 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Ring) |
8 | lflsc0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
9 | lflsc0.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
10 | 8, 9 | ring0cl 19808 | . . . 4 ⊢ (𝐷 ∈ Ring → 0 ∈ 𝐾) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐾) |
12 | lflsc0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | 3, 11, 12 | ofc12 7561 | . 2 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × {( 0 · 𝑋)})) |
14 | lflsc0.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
15 | 8, 14, 9 | ringlz 19826 | . . . . 5 ⊢ ((𝐷 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ( 0 · 𝑋) = 0 ) |
16 | 7, 12, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) |
17 | 16 | sneqd 4573 | . . 3 ⊢ (𝜑 → {( 0 · 𝑋)} = { 0 }) |
18 | 17 | xpeq2d 5619 | . 2 ⊢ (𝜑 → (𝑉 × {( 0 · 𝑋)}) = (𝑉 × { 0 })) |
19 | 13, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 0gc0g 17150 Ringcrg 19783 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ring 19785 df-lmod 20125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |