| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflsc0N | Structured version Visualization version GIF version | ||
| Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lflsc0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflsc0.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflsc0.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflsc0.t | ⊢ · = (.r‘𝐷) |
| lflsc0.o | ⊢ 0 = (0g‘𝐷) |
| lflsc0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflsc0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lflsc0N | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflsc0.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6919 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflsc0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflsc0.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 6 | 5 | lmodring 20867 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Ring) |
| 8 | lflsc0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
| 9 | lflsc0.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
| 10 | 8, 9 | ring0cl 20265 | . . . 4 ⊢ (𝐷 ∈ Ring → 0 ∈ 𝐾) |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐾) |
| 12 | lflsc0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 13 | 3, 11, 12 | ofc12 7728 | . 2 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × {( 0 · 𝑋)})) |
| 14 | lflsc0.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
| 15 | 8, 14, 9 | ringlz 20291 | . . . . 5 ⊢ ((𝐷 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ( 0 · 𝑋) = 0 ) |
| 16 | 7, 12, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) |
| 17 | 16 | sneqd 4637 | . . 3 ⊢ (𝜑 → {( 0 · 𝑋)} = { 0 }) |
| 18 | 17 | xpeq2d 5714 | . 2 ⊢ (𝜑 → (𝑉 × {( 0 · 𝑋)}) = (𝑉 × { 0 })) |
| 19 | 13, 18 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 × cxp 5682 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 Basecbs 17248 .rcmulr 17299 Scalarcsca 17301 0gc0g 17485 Ringcrg 20231 LModclmod 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-lmod 20861 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |