![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapeq0 | Structured version Visualization version GIF version |
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapeq0.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapeq0.z | ⊢ 0 = (0.‘𝐾) |
pmapeq0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapeq0 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 38742 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | pmapeq0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | pmapeq0.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 3, 4 | pmap0 39148 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘ 0 ) = ∅) |
7 | 6 | eqeq2d 2737 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ (𝑀‘𝑋) = ∅)) |
8 | hlop 38744 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
10 | pmapeq0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
11 | 10, 3 | op0cl 38566 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | 10, 4 | pmap11 39145 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
14 | 12, 13 | mpd3an3 1458 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
15 | 7, 14 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∅c0 4317 ‘cfv 6536 Basecbs 17150 0.cp0 18385 OPcops 38554 AtLatcal 38646 HLchlt 38732 pmapcpmap 38880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18257 df-poset 18275 df-plt 18292 df-lub 18308 df-glb 18309 df-join 18310 df-meet 18311 df-p0 18387 df-lat 18394 df-clat 18461 df-oposet 38558 df-ol 38560 df-oml 38561 df-covers 38648 df-ats 38649 df-atl 38680 df-cvlat 38704 df-hlat 38733 df-pmap 38887 |
This theorem is referenced by: pmapjat1 39236 |
Copyright terms: Public domain | W3C validator |