Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapeq0 Structured version   Visualization version   GIF version

Theorem pmapeq0 38085
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapeq0.b 𝐵 = (Base‘𝐾)
pmapeq0.z 0 = (0.‘𝐾)
pmapeq0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapeq0 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))

Proof of Theorem pmapeq0
StepHypRef Expression
1 hlatl 37678 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 481 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
3 pmapeq0.z . . . . 5 0 = (0.‘𝐾)
4 pmapeq0.m . . . . 5 𝑀 = (pmap‘𝐾)
53, 4pmap0 38084 . . . 4 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
62, 5syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀0 ) = ∅)
76eqeq2d 2747 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ (𝑀𝑋) = ∅))
8 hlop 37680 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 481 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
10 pmapeq0.b . . . . 5 𝐵 = (Base‘𝐾)
1110, 3op0cl 37502 . . . 4 (𝐾 ∈ OP → 0𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 0𝐵)
1310, 4pmap11 38081 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵0𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
1412, 13mpd3an3 1461 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
157, 14bitr3d 280 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  c0 4270  cfv 6480  Basecbs 17010  0.cp0 18239  OPcops 37490  AtLatcal 37582  HLchlt 37668  pmapcpmap 37816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-lat 18248  df-clat 18315  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-pmap 37823
This theorem is referenced by:  pmapjat1  38172
  Copyright terms: Public domain W3C validator