![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapeq0 | Structured version Visualization version GIF version |
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapeq0.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapeq0.z | ⊢ 0 = (0.‘𝐾) |
pmapeq0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapeq0 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 38218 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | pmapeq0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | pmapeq0.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 3, 4 | pmap0 38624 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘ 0 ) = ∅) |
7 | 6 | eqeq2d 2743 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ (𝑀‘𝑋) = ∅)) |
8 | hlop 38220 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
10 | pmapeq0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
11 | 10, 3 | op0cl 38042 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | 10, 4 | pmap11 38621 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
14 | 12, 13 | mpd3an3 1462 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
15 | 7, 14 | bitr3d 280 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4321 ‘cfv 6540 Basecbs 17140 0.cp0 18372 OPcops 38030 AtLatcal 38122 HLchlt 38208 pmapcpmap 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-pmap 38363 |
This theorem is referenced by: pmapjat1 38712 |
Copyright terms: Public domain | W3C validator |