Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapeq0 Structured version   Visualization version   GIF version

Theorem pmapeq0 37707
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapeq0.b 𝐵 = (Base‘𝐾)
pmapeq0.z 0 = (0.‘𝐾)
pmapeq0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapeq0 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))

Proof of Theorem pmapeq0
StepHypRef Expression
1 hlatl 37301 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
3 pmapeq0.z . . . . 5 0 = (0.‘𝐾)
4 pmapeq0.m . . . . 5 𝑀 = (pmap‘𝐾)
53, 4pmap0 37706 . . . 4 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
62, 5syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀0 ) = ∅)
76eqeq2d 2749 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ (𝑀𝑋) = ∅))
8 hlop 37303 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
10 pmapeq0.b . . . . 5 𝐵 = (Base‘𝐾)
1110, 3op0cl 37125 . . . 4 (𝐾 ∈ OP → 0𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 0𝐵)
1310, 4pmap11 37703 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵0𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
1412, 13mpd3an3 1460 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
157, 14bitr3d 280 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  c0 4253  cfv 6418  Basecbs 16840  0.cp0 18056  OPcops 37113  AtLatcal 37205  HLchlt 37291  pmapcpmap 37438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-pmap 37445
This theorem is referenced by:  pmapjat1  37794
  Copyright terms: Public domain W3C validator