Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapeq0 Structured version   Visualization version   GIF version

Theorem pmapeq0 39888
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapeq0.b 𝐵 = (Base‘𝐾)
pmapeq0.z 0 = (0.‘𝐾)
pmapeq0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapeq0 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))

Proof of Theorem pmapeq0
StepHypRef Expression
1 hlatl 39482 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
3 pmapeq0.z . . . . 5 0 = (0.‘𝐾)
4 pmapeq0.m . . . . 5 𝑀 = (pmap‘𝐾)
53, 4pmap0 39887 . . . 4 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
62, 5syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀0 ) = ∅)
76eqeq2d 2744 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ (𝑀𝑋) = ∅))
8 hlop 39484 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
10 pmapeq0.b . . . . 5 𝐵 = (Base‘𝐾)
1110, 3op0cl 39306 . . . 4 (𝐾 ∈ OP → 0𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 0𝐵)
1310, 4pmap11 39884 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵0𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
1412, 13mpd3an3 1464 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = (𝑀0 ) ↔ 𝑋 = 0 ))
157, 14bitr3d 281 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  c0 4282  cfv 6488  Basecbs 17124  0.cp0 18331  OPcops 39294  AtLatcal 39386  HLchlt 39472  pmapcpmap 39619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-lat 18342  df-clat 18409  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-pmap 39626
This theorem is referenced by:  pmapjat1  39975
  Copyright terms: Public domain W3C validator