![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapeq0 | Structured version Visualization version GIF version |
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapeq0.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapeq0.z | ⊢ 0 = (0.‘𝐾) |
pmapeq0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapeq0 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 39342 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | pmapeq0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | pmapeq0.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 3, 4 | pmap0 39748 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘ 0 ) = ∅) |
7 | 6 | eqeq2d 2746 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ (𝑀‘𝑋) = ∅)) |
8 | hlop 39344 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
10 | pmapeq0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
11 | 10, 3 | op0cl 39166 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | 10, 4 | pmap11 39745 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
14 | 12, 13 | mpd3an3 1461 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
15 | 7, 14 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∅c0 4339 ‘cfv 6563 Basecbs 17245 0.cp0 18481 OPcops 39154 AtLatcal 39246 HLchlt 39332 pmapcpmap 39480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-pmap 39487 |
This theorem is referenced by: pmapjat1 39836 |
Copyright terms: Public domain | W3C validator |