Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapeq0 | Structured version Visualization version GIF version |
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapeq0.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapeq0.z | ⊢ 0 = (0.‘𝐾) |
pmapeq0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapeq0 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 37374 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | pmapeq0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | pmapeq0.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 3, 4 | pmap0 37779 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘ 0 ) = ∅) |
7 | 6 | eqeq2d 2749 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ (𝑀‘𝑋) = ∅)) |
8 | hlop 37376 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
10 | pmapeq0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
11 | 10, 3 | op0cl 37198 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | 10, 4 | pmap11 37776 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
14 | 12, 13 | mpd3an3 1461 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘ 0 ) ↔ 𝑋 = 0 )) |
15 | 7, 14 | bitr3d 280 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ‘cfv 6433 Basecbs 16912 0.cp0 18141 OPcops 37186 AtLatcal 37278 HLchlt 37364 pmapcpmap 37511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-pmap 37518 |
This theorem is referenced by: pmapjat1 37867 |
Copyright terms: Public domain | W3C validator |