![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrrn | Structured version Visualization version GIF version |
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrrn | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptexg 7248 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) | |
2 | 1 | ralrimivw 3150 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
3 | 2 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
4 | eqid 2737 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) | |
5 | 4 | fnmpt 6716 | . . . . 5 ⊢ (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
7 | pmtrrn.t | . . . . . . 7 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
8 | 7 | pmtrfval 19492 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
9 | 8 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
10 | 9 | fneq1d 6669 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
12 | breq1 5154 | . . . 4 ⊢ (𝑥 = 𝑃 → (𝑥 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
13 | elpw2g 5342 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
15 | 14 | 3adant3 1133 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
16 | simp3 1139 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
17 | 12, 15, 16 | elrabd 3700 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
18 | fnfvelrn 7107 | . . 3 ⊢ ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) → (𝑇‘𝑃) ∈ ran 𝑇) | |
19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ ran 𝑇) |
20 | pmtrrn.r | . 2 ⊢ 𝑅 = ran 𝑇 | |
21 | 19, 20 | eleqtrrdi 2852 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 Vcvv 3481 ∖ cdif 3963 ⊆ wss 3966 ifcif 4534 𝒫 cpw 4608 {csn 4634 ∪ cuni 4915 class class class wbr 5151 ↦ cmpt 5234 ran crn 5694 Fn wfn 6564 ‘cfv 6569 2oc2o 8508 ≈ cen 8990 pmTrspcpmtr 19483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-pmtr 19484 |
This theorem is referenced by: pmtrfb 19507 symggen 19512 pmtr3ncom 19517 pmtrdifellem1 19518 mdetralt 22639 pmtrcnel 33124 pmtrcnel2 33125 fzo0pmtrlast 33127 pmtridf1o 33129 pmtrto1cl 33134 cyc3evpm 33185 cyc3genpmlem 33186 cyc3conja 33192 |
Copyright terms: Public domain | W3C validator |