| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrrn | Structured version Visualization version GIF version | ||
| Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrrn | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexg 7195 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) | |
| 2 | 1 | ralrimivw 3129 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) | |
| 5 | 4 | fnmpt 6658 | . . . . 5 ⊢ (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 7 | pmtrrn.t | . . . . . . 7 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 8 | 7 | pmtrfval 19380 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
| 9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
| 10 | 9 | fneq1d 6611 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 12 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝑃 → (𝑥 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
| 13 | elpw2g 5288 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
| 14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 17 | 12, 15, 16 | elrabd 3661 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 18 | fnfvelrn 7052 | . . 3 ⊢ ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) → (𝑇‘𝑃) ∈ ran 𝑇) | |
| 19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ ran 𝑇) |
| 20 | pmtrrn.r | . 2 ⊢ 𝑅 = ran 𝑇 | |
| 21 | 19, 20 | eleqtrrdi 2839 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 Fn wfn 6506 ‘cfv 6511 2oc2o 8428 ≈ cen 8915 pmTrspcpmtr 19371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-pmtr 19372 |
| This theorem is referenced by: pmtrfb 19395 symggen 19400 pmtr3ncom 19405 pmtrdifellem1 19406 mdetralt 22495 pmtrcnel 33046 pmtrcnel2 33047 fzo0pmtrlast 33049 pmtridf1o 33051 pmtrto1cl 33056 cyc3evpm 33107 cyc3genpmlem 33108 cyc3conja 33114 |
| Copyright terms: Public domain | W3C validator |