| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrrn | Structured version Visualization version GIF version | ||
| Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrrn | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexg 7163 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) | |
| 2 | 1 | ralrimivw 3129 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
| 4 | eqid 2733 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) | |
| 5 | 4 | fnmpt 6628 | . . . . 5 ⊢ (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 7 | pmtrrn.t | . . . . . . 7 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 8 | 7 | pmtrfval 19366 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
| 9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
| 10 | 9 | fneq1d 6581 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 12 | breq1 5098 | . . . 4 ⊢ (𝑥 = 𝑃 → (𝑥 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
| 13 | elpw2g 5275 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
| 14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 17 | 12, 15, 16 | elrabd 3645 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
| 18 | fnfvelrn 7021 | . . 3 ⊢ ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) → (𝑇‘𝑃) ∈ ran 𝑇) | |
| 19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ ran 𝑇) |
| 20 | pmtrrn.r | . 2 ⊢ 𝑅 = ran 𝑇 | |
| 21 | 19, 20 | eleqtrrdi 2844 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 class class class wbr 5095 ↦ cmpt 5176 ran crn 5622 Fn wfn 6483 ‘cfv 6488 2oc2o 8387 ≈ cen 8874 pmTrspcpmtr 19357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-pmtr 19358 |
| This theorem is referenced by: pmtrfb 19381 symggen 19386 pmtr3ncom 19391 pmtrdifellem1 19392 mdetralt 22526 pmtrcnel 33067 pmtrcnel2 33068 fzo0pmtrlast 33070 pmtridf1o 33072 pmtrto1cl 33077 cyc3evpm 33128 cyc3genpmlem 33129 cyc3conja 33135 |
| Copyright terms: Public domain | W3C validator |