MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 19373
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 7163 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 3129 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1133 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2733 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6628 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 19366 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1133 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 6581 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
116, 10mpbird 257 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
12 breq1 5098 . . . 4 (𝑥 = 𝑃 → (𝑥 ≈ 2o𝑃 ≈ 2o))
13 elpw2g 5275 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1413biimpar 477 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
15143adant3 1132 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
16 simp3 1138 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1712, 15, 16elrabd 3645 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
18 fnfvelrn 7021 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}) → (𝑇𝑃) ∈ ran 𝑇)
1911, 17, 18syl2anc 584 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ ran 𝑇)
20 pmtrrn.r . 2 𝑅 = ran 𝑇
2119, 20eleqtrrdi 2844 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476  𝒫 cpw 4551  {csn 4577   cuni 4860   class class class wbr 5095  cmpt 5176  ran crn 5622   Fn wfn 6483  cfv 6488  2oc2o 8387  cen 8874  pmTrspcpmtr 19357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-pmtr 19358
This theorem is referenced by:  pmtrfb  19381  symggen  19386  pmtr3ncom  19391  pmtrdifellem1  19392  mdetralt  22526  pmtrcnel  33067  pmtrcnel2  33068  fzo0pmtrlast  33070  pmtridf1o  33072  pmtrto1cl  33077  cyc3evpm  33128  cyc3genpmlem  33129  cyc3conja  33135
  Copyright terms: Public domain W3C validator