MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 18320
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6857 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 3152 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1126 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2797 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6363 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 18313 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1126 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 6323 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
116, 10mpbird 258 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
12 breq1 4971 . . . 4 (𝑥 = 𝑃 → (𝑥 ≈ 2o𝑃 ≈ 2o))
13 elpw2g 5145 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1413biimpar 478 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
15143adant3 1125 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
16 simp3 1131 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1712, 15, 16elrabd 3623 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
18 fnfvelrn 6720 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}) → (𝑇𝑃) ∈ ran 𝑇)
1911, 17, 18syl2anc 584 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ ran 𝑇)
20 pmtrrn.r . 2 𝑅 = ran 𝑇
2119, 20syl6eleqr 2896 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1525  wcel 2083  wral 3107  {crab 3111  Vcvv 3440  cdif 3862  wss 3865  ifcif 4387  𝒫 cpw 4459  {csn 4478   cuni 4751   class class class wbr 4968  cmpt 5047  ran crn 5451   Fn wfn 6227  cfv 6232  2oc2o 7954  cen 8361  pmTrspcpmtr 18304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-pmtr 18305
This theorem is referenced by:  pmtrfb  18328  symggen  18333  pmtr3ncom  18338  pmtrdifellem1  18339  mdetralt  20905  pmtrcnel  30388  pmtrcnel2  30389  cyc3evpm  30426  cyc3genpmlem  30427  cyc3conja  30433  pmtrto1cl  30659  pmtridf1o  30666
  Copyright terms: Public domain W3C validator