MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 18579
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6978 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 3183 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1129 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2821 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6483 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 18572 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1129 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 6441 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
116, 10mpbird 259 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
12 breq1 5062 . . . 4 (𝑥 = 𝑃 → (𝑥 ≈ 2o𝑃 ≈ 2o))
13 elpw2g 5240 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1413biimpar 480 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
15143adant3 1128 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
16 simp3 1134 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1712, 15, 16elrabd 3682 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
18 fnfvelrn 6843 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}) → (𝑇𝑃) ∈ ran 𝑇)
1911, 17, 18syl2anc 586 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ ran 𝑇)
20 pmtrrn.r . 2 𝑅 = ran 𝑇
2119, 20eleqtrrdi 2924 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3495  cdif 3933  wss 3936  ifcif 4467  𝒫 cpw 4539  {csn 4561   cuni 4832   class class class wbr 5059  cmpt 5139  ran crn 5551   Fn wfn 6345  cfv 6350  2oc2o 8090  cen 8500  pmTrspcpmtr 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-pmtr 18564
This theorem is referenced by:  pmtrfb  18587  symggen  18592  pmtr3ncom  18597  pmtrdifellem1  18598  mdetralt  21211  pmtrcnel  30728  pmtrcnel2  30729  pmtridf1o  30731  pmtrto1cl  30736  cyc3evpm  30787  cyc3genpmlem  30788  cyc3conja  30794
  Copyright terms: Public domain W3C validator