Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrrn | Structured version Visualization version GIF version |
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrrn | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptexg 7079 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) | |
2 | 1 | ralrimivw 3108 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
3 | 2 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
4 | eqid 2738 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) | |
5 | 4 | fnmpt 6557 | . . . . 5 ⊢ (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
7 | pmtrrn.t | . . . . . . 7 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
8 | 7 | pmtrfval 18973 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
9 | 8 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
10 | 9 | fneq1d 6510 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
11 | 6, 10 | mpbird 256 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
12 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝑃 → (𝑥 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
13 | elpw2g 5263 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
15 | 14 | 3adant3 1130 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
16 | simp3 1136 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
17 | 12, 15, 16 | elrabd 3619 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
18 | fnfvelrn 6940 | . . 3 ⊢ ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) → (𝑇‘𝑃) ∈ ran 𝑇) | |
19 | 11, 17, 18 | syl2anc 583 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ ran 𝑇) |
20 | pmtrrn.r | . 2 ⊢ 𝑅 = ran 𝑇 | |
21 | 19, 20 | eleqtrrdi 2850 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 ‘cfv 6418 2oc2o 8261 ≈ cen 8688 pmTrspcpmtr 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-pmtr 18965 |
This theorem is referenced by: pmtrfb 18988 symggen 18993 pmtr3ncom 18998 pmtrdifellem1 18999 mdetralt 21665 pmtrcnel 31260 pmtrcnel2 31261 pmtridf1o 31263 pmtrto1cl 31268 cyc3evpm 31319 cyc3genpmlem 31320 cyc3conja 31326 |
Copyright terms: Public domain | W3C validator |