MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 19499
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 7248 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 3150 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1134 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2737 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6716 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 19492 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1134 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 6669 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
116, 10mpbird 257 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
12 breq1 5154 . . . 4 (𝑥 = 𝑃 → (𝑥 ≈ 2o𝑃 ≈ 2o))
13 elpw2g 5342 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1413biimpar 477 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
15143adant3 1133 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
16 simp3 1139 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1712, 15, 16elrabd 3700 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
18 fnfvelrn 7107 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}) → (𝑇𝑃) ∈ ran 𝑇)
1911, 17, 18syl2anc 584 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ ran 𝑇)
20 pmtrrn.r . 2 𝑅 = ran 𝑇
2119, 20eleqtrrdi 2852 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  wral 3061  {crab 3436  Vcvv 3481  cdif 3963  wss 3966  ifcif 4534  𝒫 cpw 4608  {csn 4634   cuni 4915   class class class wbr 5151  cmpt 5234  ran crn 5694   Fn wfn 6564  cfv 6569  2oc2o 8508  cen 8990  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-pmtr 19484
This theorem is referenced by:  pmtrfb  19507  symggen  19512  pmtr3ncom  19517  pmtrdifellem1  19518  mdetralt  22639  pmtrcnel  33124  pmtrcnel2  33125  fzo0pmtrlast  33127  pmtridf1o  33129  pmtrto1cl  33134  cyc3evpm  33185  cyc3genpmlem  33186  cyc3conja  33192
  Copyright terms: Public domain W3C validator