MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 19387
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 7195 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 3129 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1133 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2729 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6658 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 19380 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1133 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 6611 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
116, 10mpbird 257 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
12 breq1 5110 . . . 4 (𝑥 = 𝑃 → (𝑥 ≈ 2o𝑃 ≈ 2o))
13 elpw2g 5288 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1413biimpar 477 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
15143adant3 1132 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
16 simp3 1138 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1712, 15, 16elrabd 3661 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
18 fnfvelrn 7052 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}) → (𝑇𝑃) ∈ ran 𝑇)
1911, 17, 18syl2anc 584 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ ran 𝑇)
20 pmtrrn.r . 2 𝑅 = ran 𝑇
2119, 20eleqtrrdi 2839 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  cfv 6511  2oc2o 8428  cen 8915  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-pmtr 19372
This theorem is referenced by:  pmtrfb  19395  symggen  19400  pmtr3ncom  19405  pmtrdifellem1  19406  mdetralt  22495  pmtrcnel  33046  pmtrcnel2  33047  fzo0pmtrlast  33049  pmtridf1o  33051  pmtrto1cl  33056  cyc3evpm  33107  cyc3genpmlem  33108  cyc3conja  33114
  Copyright terms: Public domain W3C validator