![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrrn | Structured version Visualization version GIF version |
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrrn | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptexg 6857 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) | |
2 | 1 | ralrimivw 3152 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
3 | 2 | 3ad2ant1 1126 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V) |
4 | eqid 2797 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) | |
5 | 4 | fnmpt 6363 | . . . . 5 ⊢ (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
7 | pmtrrn.t | . . . . . . 7 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
8 | 7 | pmtrfval 18313 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
9 | 8 | 3ad2ant1 1126 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦)))) |
10 | 9 | fneq1d 6323 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑧, ∪ (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
11 | 6, 10 | mpbird 258 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
12 | breq1 4971 | . . . 4 ⊢ (𝑥 = 𝑃 → (𝑥 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
13 | elpw2g 5145 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
14 | 13 | biimpar 478 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
15 | 14 | 3adant3 1125 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
16 | simp3 1131 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
17 | 12, 15, 16 | elrabd 3623 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
18 | fnfvelrn 6720 | . . 3 ⊢ ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) → (𝑇‘𝑃) ∈ ran 𝑇) | |
19 | 11, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ ran 𝑇) |
20 | pmtrrn.r | . 2 ⊢ 𝑅 = ran 𝑇 | |
21 | 19, 20 | syl6eleqr 2896 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∀wral 3107 {crab 3111 Vcvv 3440 ∖ cdif 3862 ⊆ wss 3865 ifcif 4387 𝒫 cpw 4459 {csn 4478 ∪ cuni 4751 class class class wbr 4968 ↦ cmpt 5047 ran crn 5451 Fn wfn 6227 ‘cfv 6232 2oc2o 7954 ≈ cen 8361 pmTrspcpmtr 18304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-pmtr 18305 |
This theorem is referenced by: pmtrfb 18328 symggen 18333 pmtr3ncom 18338 pmtrdifellem1 18339 mdetralt 20905 pmtrcnel 30388 pmtrcnel2 30389 cyc3evpm 30426 cyc3genpmlem 30427 cyc3conja 30433 pmtrto1cl 30659 pmtridf1o 30666 |
Copyright terms: Public domain | W3C validator |