| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psgnid | Structured version Visualization version GIF version | ||
| Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| psgnid.s | ⊢ 𝑆 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnid | ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (SymGrp‘𝐷) = (SymGrp‘𝐷) | |
| 2 | 1 | symgid 19317 | . . 3 ⊢ (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷))) |
| 3 | 2 | fveq2d 6834 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷)))) |
| 4 | psgnid.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝐷) | |
| 5 | eqid 2733 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 6 | 1, 4, 5 | psgnghm2 21522 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 7 | eqid 2733 | . . . 4 ⊢ (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷)) | |
| 8 | cnring 21331 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
| 9 | eqid 2733 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 10 | 9 | ringmgp 20161 | . . . . . 6 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
| 12 | 1ex 11117 | . . . . . 6 ⊢ 1 ∈ V | |
| 13 | 12 | prid1 4716 | . . . . 5 ⊢ 1 ∈ {1, -1} |
| 14 | ax-1cn 11073 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 15 | neg1cn 12119 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 16 | prssi 4774 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
| 17 | 14, 15, 16 | mp2an 692 | . . . . 5 ⊢ {1, -1} ⊆ ℂ |
| 18 | cnfldbas 21299 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 19 | 9, 18 | mgpbas 20067 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 20 | cnfld1 21334 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
| 21 | 9, 20 | ringidval 20105 | . . . . . 6 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
| 22 | 5, 19, 21 | ress0g 18674 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 23 | 11, 13, 17, 22 | mp3an 1463 | . . . 4 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
| 24 | 7, 23 | ghmid 19138 | . . 3 ⊢ (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
| 25 | 6, 24 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
| 26 | 3, 25 | eqtrd 2768 | 1 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {cpr 4579 I cid 5515 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 Fincfn 8877 ℂcc 11013 1c1 11016 -cneg 11354 ↾s cress 17145 0gc0g 17347 Mndcmnd 18646 GrpHom cghm 19128 SymGrpcsymg 19285 pmSgncpsgn 19405 mulGrpcmgp 20062 Ringcrg 20155 ℂfldccnfld 21295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-xnn0 12464 df-z 12478 df-dec 12597 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-word 14425 df-lsw 14474 df-concat 14482 df-s1 14508 df-substr 14553 df-pfx 14583 df-splice 14661 df-reverse 14670 df-s2 14759 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-0g 17349 df-gsum 17350 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-efmnd 18781 df-grp 18853 df-minusg 18854 df-subg 19040 df-ghm 19129 df-gim 19175 df-oppg 19262 df-symg 19286 df-pmtr 19358 df-psgn 19407 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-drng 20650 df-cnfld 21296 |
| This theorem is referenced by: psgnfzto1st 33083 evpmid 33126 |
| Copyright terms: Public domain | W3C validator |