![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psgnid | Structured version Visualization version GIF version |
Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnid.s | ⊢ 𝑆 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnid | ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (SymGrp‘𝐷) = (SymGrp‘𝐷) | |
2 | 1 | symgid 19443 | . . 3 ⊢ (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷))) |
3 | 2 | fveq2d 6924 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷)))) |
4 | psgnid.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝐷) | |
5 | eqid 2740 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
6 | 1, 4, 5 | psgnghm2 21622 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
7 | eqid 2740 | . . . 4 ⊢ (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷)) | |
8 | cnring 21426 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
9 | eqid 2740 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
10 | 9 | ringmgp 20266 | . . . . . 6 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
12 | 1ex 11286 | . . . . . 6 ⊢ 1 ∈ V | |
13 | 12 | prid1 4787 | . . . . 5 ⊢ 1 ∈ {1, -1} |
14 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
15 | neg1cn 12407 | . . . . . 6 ⊢ -1 ∈ ℂ | |
16 | prssi 4846 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
17 | 14, 15, 16 | mp2an 691 | . . . . 5 ⊢ {1, -1} ⊆ ℂ |
18 | cnfldbas 21391 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
19 | 9, 18 | mgpbas 20167 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
20 | cnfld1 21429 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
21 | 9, 20 | ringidval 20210 | . . . . . 6 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
22 | 5, 19, 21 | ress0g 18800 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
23 | 11, 13, 17, 22 | mp3an 1461 | . . . 4 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
24 | 7, 23 | ghmid 19262 | . . 3 ⊢ (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
25 | 6, 24 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
26 | 3, 25 | eqtrd 2780 | 1 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 I cid 5592 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 1c1 11185 -cneg 11521 ↾s cress 17287 0gc0g 17499 Mndcmnd 18772 GrpHom cghm 19252 SymGrpcsymg 19410 pmSgncpsgn 19531 mulGrpcmgp 20161 Ringcrg 20260 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-subg 19163 df-ghm 19253 df-gim 19299 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-cnfld 21388 |
This theorem is referenced by: psgnfzto1st 33098 evpmid 33141 |
Copyright terms: Public domain | W3C validator |