Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnid Structured version   Visualization version   GIF version

Theorem psgnid 31266
Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypothesis
Ref Expression
psgnid.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnid (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)

Proof of Theorem psgnid
StepHypRef Expression
1 eqid 2738 . . . 4 (SymGrp‘𝐷) = (SymGrp‘𝐷)
21symgid 18924 . . 3 (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷)))
32fveq2d 6760 . 2 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷))))
4 psgnid.s . . . 4 𝑆 = (pmSgn‘𝐷)
5 eqid 2738 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
61, 4, 5psgnghm2 20698 . . 3 (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
7 eqid 2738 . . . 4 (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷))
8 cnring 20532 . . . . . 6 fld ∈ Ring
9 eqid 2738 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
109ringmgp 19704 . . . . . 6 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
118, 10ax-mp 5 . . . . 5 (mulGrp‘ℂfld) ∈ Mnd
12 1ex 10902 . . . . . 6 1 ∈ V
1312prid1 4695 . . . . 5 1 ∈ {1, -1}
14 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
15 neg1cn 12017 . . . . . 6 -1 ∈ ℂ
16 prssi 4751 . . . . . 6 ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ)
1714, 15, 16mp2an 688 . . . . 5 {1, -1} ⊆ ℂ
18 cnfldbas 20514 . . . . . . 7 ℂ = (Base‘ℂfld)
199, 18mgpbas 19641 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20535 . . . . . . 7 1 = (1r‘ℂfld)
219, 20ringidval 19654 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
225, 19, 21ress0g 18328 . . . . 5 (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2311, 13, 17, 22mp3an 1459 . . . 4 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 23ghmid 18755 . . 3 (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
256, 24syl 17 . 2 (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
263, 25eqtrd 2778 1 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  {cpr 4560   I cid 5479  cres 5582  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  1c1 10803  -cneg 11136  s cress 16867  0gc0g 17067  Mndcmnd 18300   GrpHom cghm 18746  SymGrpcsymg 18889  pmSgncpsgn 19012  mulGrpcmgp 19635  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-gim 18790  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-cnfld 20511
This theorem is referenced by:  psgnfzto1st  31274  evpmid  31317
  Copyright terms: Public domain W3C validator