Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnid Structured version   Visualization version   GIF version

Theorem psgnid 33108
Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypothesis
Ref Expression
psgnid.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnid (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)

Proof of Theorem psgnid
StepHypRef Expression
1 eqid 2735 . . . 4 (SymGrp‘𝐷) = (SymGrp‘𝐷)
21symgid 19382 . . 3 (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷)))
32fveq2d 6880 . 2 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷))))
4 psgnid.s . . . 4 𝑆 = (pmSgn‘𝐷)
5 eqid 2735 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
61, 4, 5psgnghm2 21541 . . 3 (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
7 eqid 2735 . . . 4 (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷))
8 cnring 21353 . . . . . 6 fld ∈ Ring
9 eqid 2735 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
109ringmgp 20199 . . . . . 6 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
118, 10ax-mp 5 . . . . 5 (mulGrp‘ℂfld) ∈ Mnd
12 1ex 11231 . . . . . 6 1 ∈ V
1312prid1 4738 . . . . 5 1 ∈ {1, -1}
14 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
15 neg1cn 12354 . . . . . 6 -1 ∈ ℂ
16 prssi 4797 . . . . . 6 ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ)
1714, 15, 16mp2an 692 . . . . 5 {1, -1} ⊆ ℂ
18 cnfldbas 21319 . . . . . . 7 ℂ = (Base‘ℂfld)
199, 18mgpbas 20105 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 21356 . . . . . . 7 1 = (1r‘ℂfld)
219, 20ringidval 20143 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
225, 19, 21ress0g 18740 . . . . 5 (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2311, 13, 17, 22mp3an 1463 . . . 4 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 23ghmid 19205 . . 3 (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
256, 24syl 17 . 2 (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
263, 25eqtrd 2770 1 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  {cpr 4603   I cid 5547  cres 5656  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  1c1 11130  -cneg 11467  s cress 17251  0gc0g 17453  Mndcmnd 18712   GrpHom cghm 19195  SymGrpcsymg 19350  pmSgncpsgn 19470  mulGrpcmgp 20100  Ringcrg 20193  fldccnfld 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-gsum 17456  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-subg 19106  df-ghm 19196  df-gim 19242  df-oppg 19329  df-symg 19351  df-pmtr 19423  df-psgn 19472  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-drng 20691  df-cnfld 21316
This theorem is referenced by:  psgnfzto1st  33116  evpmid  33159
  Copyright terms: Public domain W3C validator