Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnid Structured version   Visualization version   GIF version

Theorem psgnid 30838
 Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypothesis
Ref Expression
psgnid.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnid (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)

Proof of Theorem psgnid
StepHypRef Expression
1 eqid 2798 . . . 4 (SymGrp‘𝐷) = (SymGrp‘𝐷)
21symgid 18542 . . 3 (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷)))
32fveq2d 6659 . 2 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷))))
4 psgnid.s . . . 4 𝑆 = (pmSgn‘𝐷)
5 eqid 2798 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
61, 4, 5psgnghm2 20292 . . 3 (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
7 eqid 2798 . . . 4 (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷))
8 cnring 20134 . . . . . 6 fld ∈ Ring
9 eqid 2798 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
109ringmgp 19317 . . . . . 6 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
118, 10ax-mp 5 . . . . 5 (mulGrp‘ℂfld) ∈ Mnd
12 1ex 10644 . . . . . 6 1 ∈ V
1312prid1 4661 . . . . 5 1 ∈ {1, -1}
14 ax-1cn 10602 . . . . . 6 1 ∈ ℂ
15 neg1cn 11757 . . . . . 6 -1 ∈ ℂ
16 prssi 4717 . . . . . 6 ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ)
1714, 15, 16mp2an 691 . . . . 5 {1, -1} ⊆ ℂ
18 cnfldbas 20116 . . . . . . 7 ℂ = (Base‘ℂfld)
199, 18mgpbas 19259 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20137 . . . . . . 7 1 = (1r‘ℂfld)
219, 20ringidval 19267 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
225, 19, 21ress0g 17951 . . . . 5 (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2311, 13, 17, 22mp3an 1458 . . . 4 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 23ghmid 18377 . . 3 (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
256, 24syl 17 . 2 (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1)
263, 25eqtrd 2833 1 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ⊆ wss 3883  {cpr 4530   I cid 5428   ↾ cres 5525  ‘cfv 6332  (class class class)co 7145  Fincfn 8510  ℂcc 10542  1c1 10545  -cneg 10878   ↾s cress 16496  0gc0g 16725  Mndcmnd 17923   GrpHom cghm 18368  SymGrpcsymg 18508  pmSgncpsgn 18630  mulGrpcmgp 19253  Ringcrg 19311  ℂfldccnfld 20112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-tpos 7893  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-hash 13707  df-word 13878  df-lsw 13926  df-concat 13934  df-s1 13961  df-substr 14014  df-pfx 14044  df-splice 14123  df-reverse 14132  df-s2 14221  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-0g 16727  df-gsum 16728  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-efmnd 18046  df-grp 18118  df-minusg 18119  df-subg 18289  df-ghm 18369  df-gim 18412  df-oppg 18487  df-symg 18509  df-pmtr 18583  df-psgn 18632  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-cring 19314  df-oppr 19390  df-dvdsr 19408  df-unit 19409  df-invr 19439  df-dvr 19450  df-drng 19518  df-cnfld 20113 This theorem is referenced by:  psgnfzto1st  30846  evpmid  30889
 Copyright terms: Public domain W3C validator