|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidALTN | Structured version Visualization version GIF version | ||
| Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39956. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pexmidALT.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| pexmidALT.p | ⊢ + = (+𝑃‘𝐾) | 
| pexmidALT.o | ⊢ ⊥ = (⊥𝑃‘𝐾) | 
| Ref | Expression | 
|---|---|
| pexmidALTN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
| 2 | fveq2 6905 | . . . 4 ⊢ (𝑋 = ∅ → ( ⊥ ‘𝑋) = ( ⊥ ‘∅)) | |
| 3 | 1, 2 | oveq12d 7450 | . . 3 ⊢ (𝑋 = ∅ → (𝑋 + ( ⊥ ‘𝑋)) = (∅ + ( ⊥ ‘∅))) | 
| 4 | pexmidALT.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | pexmidALT.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 4, 5 | pol0N 39912 | . . . . . . 7 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) = 𝐴) | 
| 7 | eqimss 4041 | . . . . . . 7 ⊢ (( ⊥ ‘∅) = 𝐴 → ( ⊥ ‘∅) ⊆ 𝐴) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) ⊆ 𝐴) | 
| 9 | pexmidALT.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 10 | 4, 9 | padd02 39815 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘∅) ⊆ 𝐴) → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) | 
| 11 | 8, 10 | mpdan 687 | . . . . 5 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) | 
| 12 | 11, 6 | eqtrd 2776 | . . . 4 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = 𝐴) | 
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (∅ + ( ⊥ ‘∅)) = 𝐴) | 
| 14 | 3, 13 | sylan9eqr 2798 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | 
| 15 | 4, 9, 5 | pexmidlem8N 39980 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | 
| 16 | 15 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | 
| 17 | 14, 16 | pm2.61dane 3028 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 ∅c0 4332 ‘cfv 6560 (class class class)co 7432 Atomscatm 39265 HLchlt 39352 +𝑃cpadd 39798 ⊥𝑃cpolN 39905 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-polarityN 39906 df-psubclN 39938 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |