Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Structured version   Visualization version   GIF version

Theorem pexmidALTN 39339
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39314. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, π‘ž, π‘Ÿ in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atomsβ€˜πΎ)
pexmidALT.p + = (+π‘ƒβ€˜πΎ)
pexmidALT.o βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pexmidALTN (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 22 . . . 4 (𝑋 = βˆ… β†’ 𝑋 = βˆ…)
2 fveq2 6881 . . . 4 (𝑋 = βˆ… β†’ ( βŠ₯ β€˜π‘‹) = ( βŠ₯ β€˜βˆ…))
31, 2oveq12d 7419 . . 3 (𝑋 = βˆ… β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = (βˆ… + ( βŠ₯ β€˜βˆ…)))
4 pexmidALT.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
5 pexmidALT.o . . . . . . . 8 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
64, 5pol0N 39270 . . . . . . 7 (𝐾 ∈ HL β†’ ( βŠ₯ β€˜βˆ…) = 𝐴)
7 eqimss 4032 . . . . . . 7 (( βŠ₯ β€˜βˆ…) = 𝐴 β†’ ( βŠ₯ β€˜βˆ…) βŠ† 𝐴)
86, 7syl 17 . . . . . 6 (𝐾 ∈ HL β†’ ( βŠ₯ β€˜βˆ…) βŠ† 𝐴)
9 pexmidALT.p . . . . . . 7 + = (+π‘ƒβ€˜πΎ)
104, 9padd02 39173 . . . . . 6 ((𝐾 ∈ HL ∧ ( βŠ₯ β€˜βˆ…) βŠ† 𝐴) β†’ (βˆ… + ( βŠ₯ β€˜βˆ…)) = ( βŠ₯ β€˜βˆ…))
118, 10mpdan 684 . . . . 5 (𝐾 ∈ HL β†’ (βˆ… + ( βŠ₯ β€˜βˆ…)) = ( βŠ₯ β€˜βˆ…))
1211, 6eqtrd 2764 . . . 4 (𝐾 ∈ HL β†’ (βˆ… + ( βŠ₯ β€˜βˆ…)) = 𝐴)
1312ad2antrr 723 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ (βˆ… + ( βŠ₯ β€˜βˆ…)) = 𝐴)
143, 13sylan9eqr 2786 . 2 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) ∧ 𝑋 = βˆ…) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
154, 9, 5pexmidlem8N 39338 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
1615anassrs 467 . 2 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) ∧ 𝑋 β‰  βˆ…) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
1714, 16pm2.61dane 3021 1 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   βŠ† wss 3940  βˆ…c0 4314  β€˜cfv 6533  (class class class)co 7401  Atomscatm 38623  HLchlt 38710  +𝑃cpadd 39156  βŠ₯𝑃cpolN 39263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-psubsp 38864  df-pmap 38865  df-padd 39157  df-polarityN 39264  df-psubclN 39296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator