Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidALTN | Structured version Visualization version GIF version |
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 37946. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidALT.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidALT.p | ⊢ + = (+𝑃‘𝐾) |
pexmidALT.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pexmidALTN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
2 | fveq2 6768 | . . . 4 ⊢ (𝑋 = ∅ → ( ⊥ ‘𝑋) = ( ⊥ ‘∅)) | |
3 | 1, 2 | oveq12d 7286 | . . 3 ⊢ (𝑋 = ∅ → (𝑋 + ( ⊥ ‘𝑋)) = (∅ + ( ⊥ ‘∅))) |
4 | pexmidALT.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | pexmidALT.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 4, 5 | pol0N 37902 | . . . . . . 7 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) = 𝐴) |
7 | eqimss 3981 | . . . . . . 7 ⊢ (( ⊥ ‘∅) = 𝐴 → ( ⊥ ‘∅) ⊆ 𝐴) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) ⊆ 𝐴) |
9 | pexmidALT.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
10 | 4, 9 | padd02 37805 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘∅) ⊆ 𝐴) → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
11 | 8, 10 | mpdan 683 | . . . . 5 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
12 | 11, 6 | eqtrd 2779 | . . . 4 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = 𝐴) |
13 | 12 | ad2antrr 722 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (∅ + ( ⊥ ‘∅)) = 𝐴) |
14 | 3, 13 | sylan9eqr 2801 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
15 | 4, 9, 5 | pexmidlem8N 37970 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
16 | 15 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
17 | 14, 16 | pm2.61dane 3033 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 ‘cfv 6430 (class class class)co 7268 Atomscatm 37256 HLchlt 37343 +𝑃cpadd 37788 ⊥𝑃cpolN 37895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-undef 8073 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-psubsp 37496 df-pmap 37497 df-padd 37789 df-polarityN 37896 df-psubclN 37928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |