Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Structured version   Visualization version   GIF version

Theorem pexmidALTN 39972
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39947. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidALTN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 22 . . . 4 (𝑋 = ∅ → 𝑋 = ∅)
2 fveq2 6858 . . . 4 (𝑋 = ∅ → ( 𝑋) = ( ‘∅))
31, 2oveq12d 7405 . . 3 (𝑋 = ∅ → (𝑋 + ( 𝑋)) = (∅ + ( ‘∅)))
4 pexmidALT.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . . 8 = (⊥𝑃𝐾)
64, 5pol0N 39903 . . . . . . 7 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
7 eqimss 4005 . . . . . . 7 (( ‘∅) = 𝐴 → ( ‘∅) ⊆ 𝐴)
86, 7syl 17 . . . . . 6 (𝐾 ∈ HL → ( ‘∅) ⊆ 𝐴)
9 pexmidALT.p . . . . . . 7 + = (+𝑃𝐾)
104, 9padd02 39806 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘∅) ⊆ 𝐴) → (∅ + ( ‘∅)) = ( ‘∅))
118, 10mpdan 687 . . . . 5 (𝐾 ∈ HL → (∅ + ( ‘∅)) = ( ‘∅))
1211, 6eqtrd 2764 . . . 4 (𝐾 ∈ HL → (∅ + ( ‘∅)) = 𝐴)
1312ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (∅ + ( ‘∅)) = 𝐴)
143, 13sylan9eqr 2786 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( 𝑋)) = 𝐴)
154, 9, 5pexmidlem8N 39971 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
1615anassrs 467 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( 𝑋)) = 𝐴)
1714, 16pm2.61dane 3012 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Atomscatm 39256  HLchlt 39343  +𝑃cpadd 39789  𝑃cpolN 39896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-polarityN 39897  df-psubclN 39929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator