![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidALTN | Structured version Visualization version GIF version |
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 35974. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidALT.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidALT.p | ⊢ + = (+𝑃‘𝐾) |
pexmidALT.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pexmidALTN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
2 | fveq2 6411 | . . . 4 ⊢ (𝑋 = ∅ → ( ⊥ ‘𝑋) = ( ⊥ ‘∅)) | |
3 | 1, 2 | oveq12d 6896 | . . 3 ⊢ (𝑋 = ∅ → (𝑋 + ( ⊥ ‘𝑋)) = (∅ + ( ⊥ ‘∅))) |
4 | pexmidALT.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | pexmidALT.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 4, 5 | pol0N 35930 | . . . . . . 7 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) = 𝐴) |
7 | eqimss 3853 | . . . . . . 7 ⊢ (( ⊥ ‘∅) = 𝐴 → ( ⊥ ‘∅) ⊆ 𝐴) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) ⊆ 𝐴) |
9 | pexmidALT.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
10 | 4, 9 | padd02 35833 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘∅) ⊆ 𝐴) → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
11 | 8, 10 | mpdan 679 | . . . . 5 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
12 | 11, 6 | eqtrd 2833 | . . . 4 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = 𝐴) |
13 | 12 | ad2antrr 718 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (∅ + ( ⊥ ‘∅)) = 𝐴) |
14 | 3, 13 | sylan9eqr 2855 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
15 | 4, 9, 5 | pexmidlem8N 35998 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
16 | 15 | anassrs 460 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
17 | 14, 16 | pm2.61dane 3058 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ⊆ wss 3769 ∅c0 4115 ‘cfv 6101 (class class class)co 6878 Atomscatm 35284 HLchlt 35371 +𝑃cpadd 35816 ⊥𝑃cpolN 35923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-riotaBAD 34974 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-undef 7637 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-p1 17355 df-lat 17361 df-clat 17423 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-psubsp 35524 df-pmap 35525 df-padd 35817 df-polarityN 35924 df-psubclN 35956 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |