![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidALTN | Structured version Visualization version GIF version |
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39314. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables π, π, π, π, π in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidALT.a | β’ π΄ = (AtomsβπΎ) |
pexmidALT.p | β’ + = (+πβπΎ) |
pexmidALT.o | β’ β₯ = (β₯πβπΎ) |
Ref | Expression |
---|---|
pexmidALTN | β’ (((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β (π + ( β₯ βπ)) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π = β β π = β ) | |
2 | fveq2 6881 | . . . 4 β’ (π = β β ( β₯ βπ) = ( β₯ ββ )) | |
3 | 1, 2 | oveq12d 7419 | . . 3 β’ (π = β β (π + ( β₯ βπ)) = (β + ( β₯ ββ ))) |
4 | pexmidALT.a | . . . . . . . 8 β’ π΄ = (AtomsβπΎ) | |
5 | pexmidALT.o | . . . . . . . 8 β’ β₯ = (β₯πβπΎ) | |
6 | 4, 5 | pol0N 39270 | . . . . . . 7 β’ (πΎ β HL β ( β₯ ββ ) = π΄) |
7 | eqimss 4032 | . . . . . . 7 β’ (( β₯ ββ ) = π΄ β ( β₯ ββ ) β π΄) | |
8 | 6, 7 | syl 17 | . . . . . 6 β’ (πΎ β HL β ( β₯ ββ ) β π΄) |
9 | pexmidALT.p | . . . . . . 7 β’ + = (+πβπΎ) | |
10 | 4, 9 | padd02 39173 | . . . . . 6 β’ ((πΎ β HL β§ ( β₯ ββ ) β π΄) β (β + ( β₯ ββ )) = ( β₯ ββ )) |
11 | 8, 10 | mpdan 684 | . . . . 5 β’ (πΎ β HL β (β + ( β₯ ββ )) = ( β₯ ββ )) |
12 | 11, 6 | eqtrd 2764 | . . . 4 β’ (πΎ β HL β (β + ( β₯ ββ )) = π΄) |
13 | 12 | ad2antrr 723 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β (β + ( β₯ ββ )) = π΄) |
14 | 3, 13 | sylan9eqr 2786 | . 2 β’ ((((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β§ π = β ) β (π + ( β₯ βπ)) = π΄) |
15 | 4, 9, 5 | pexmidlem8N 39338 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ (( β₯ β( β₯ βπ)) = π β§ π β β )) β (π + ( β₯ βπ)) = π΄) |
16 | 15 | anassrs 467 | . 2 β’ ((((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β§ π β β ) β (π + ( β₯ βπ)) = π΄) |
17 | 14, 16 | pm2.61dane 3021 | 1 β’ (((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β (π + ( β₯ βπ)) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 β wss 3940 β c0 4314 βcfv 6533 (class class class)co 7401 Atomscatm 38623 HLchlt 38710 +πcpadd 39156 β₯πcpolN 39263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-oposet 38536 df-ol 38538 df-oml 38539 df-covers 38626 df-ats 38627 df-atl 38658 df-cvlat 38682 df-hlat 38711 df-psubsp 38864 df-pmap 38865 df-padd 39157 df-polarityN 39264 df-psubclN 39296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |