Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Structured version   Visualization version   GIF version

Theorem pexmidALTN 37992
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 37967. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidALTN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 22 . . . 4 (𝑋 = ∅ → 𝑋 = ∅)
2 fveq2 6774 . . . 4 (𝑋 = ∅ → ( 𝑋) = ( ‘∅))
31, 2oveq12d 7293 . . 3 (𝑋 = ∅ → (𝑋 + ( 𝑋)) = (∅ + ( ‘∅)))
4 pexmidALT.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . . 8 = (⊥𝑃𝐾)
64, 5pol0N 37923 . . . . . . 7 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
7 eqimss 3977 . . . . . . 7 (( ‘∅) = 𝐴 → ( ‘∅) ⊆ 𝐴)
86, 7syl 17 . . . . . 6 (𝐾 ∈ HL → ( ‘∅) ⊆ 𝐴)
9 pexmidALT.p . . . . . . 7 + = (+𝑃𝐾)
104, 9padd02 37826 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘∅) ⊆ 𝐴) → (∅ + ( ‘∅)) = ( ‘∅))
118, 10mpdan 684 . . . . 5 (𝐾 ∈ HL → (∅ + ( ‘∅)) = ( ‘∅))
1211, 6eqtrd 2778 . . . 4 (𝐾 ∈ HL → (∅ + ( ‘∅)) = 𝐴)
1312ad2antrr 723 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (∅ + ( ‘∅)) = 𝐴)
143, 13sylan9eqr 2800 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( 𝑋)) = 𝐴)
154, 9, 5pexmidlem8N 37991 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
1615anassrs 468 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( 𝑋)) = 𝐴)
1714, 16pm2.61dane 3032 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917  df-psubclN 37949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator