| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidALTN | Structured version Visualization version GIF version | ||
| Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39977. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidALT.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidALT.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidALT.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| pexmidALTN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑋 = ∅ → 𝑋 = ∅) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑋 = ∅ → ( ⊥ ‘𝑋) = ( ⊥ ‘∅)) | |
| 3 | 1, 2 | oveq12d 7428 | . . 3 ⊢ (𝑋 = ∅ → (𝑋 + ( ⊥ ‘𝑋)) = (∅ + ( ⊥ ‘∅))) |
| 4 | pexmidALT.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | pexmidALT.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 4, 5 | pol0N 39933 | . . . . . . 7 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) = 𝐴) |
| 7 | eqimss 4022 | . . . . . . 7 ⊢ (( ⊥ ‘∅) = 𝐴 → ( ⊥ ‘∅) ⊆ 𝐴) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) ⊆ 𝐴) |
| 9 | pexmidALT.p | . . . . . . 7 ⊢ + = (+𝑃‘𝐾) | |
| 10 | 4, 9 | padd02 39836 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘∅) ⊆ 𝐴) → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
| 11 | 8, 10 | mpdan 687 | . . . . 5 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = ( ⊥ ‘∅)) |
| 12 | 11, 6 | eqtrd 2771 | . . . 4 ⊢ (𝐾 ∈ HL → (∅ + ( ⊥ ‘∅)) = 𝐴) |
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (∅ + ( ⊥ ‘∅)) = 𝐴) |
| 14 | 3, 13 | sylan9eqr 2793 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
| 15 | 4, 9, 5 | pexmidlem8N 40001 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
| 16 | 15 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
| 17 | 14, 16 | pm2.61dane 3020 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Atomscatm 39286 HLchlt 39373 +𝑃cpadd 39819 ⊥𝑃cpolN 39926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-polarityN 39927 df-psubclN 39959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |