Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Structured version   Visualization version   GIF version

Theorem pexmidALTN 39451
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 39426. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidALTN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 22 . . . 4 (𝑋 = ∅ → 𝑋 = ∅)
2 fveq2 6897 . . . 4 (𝑋 = ∅ → ( 𝑋) = ( ‘∅))
31, 2oveq12d 7438 . . 3 (𝑋 = ∅ → (𝑋 + ( 𝑋)) = (∅ + ( ‘∅)))
4 pexmidALT.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . . 8 = (⊥𝑃𝐾)
64, 5pol0N 39382 . . . . . . 7 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
7 eqimss 4038 . . . . . . 7 (( ‘∅) = 𝐴 → ( ‘∅) ⊆ 𝐴)
86, 7syl 17 . . . . . 6 (𝐾 ∈ HL → ( ‘∅) ⊆ 𝐴)
9 pexmidALT.p . . . . . . 7 + = (+𝑃𝐾)
104, 9padd02 39285 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘∅) ⊆ 𝐴) → (∅ + ( ‘∅)) = ( ‘∅))
118, 10mpdan 686 . . . . 5 (𝐾 ∈ HL → (∅ + ( ‘∅)) = ( ‘∅))
1211, 6eqtrd 2768 . . . 4 (𝐾 ∈ HL → (∅ + ( ‘∅)) = 𝐴)
1312ad2antrr 725 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (∅ + ( ‘∅)) = 𝐴)
143, 13sylan9eqr 2790 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( 𝑋)) = 𝐴)
154, 9, 5pexmidlem8N 39450 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
1615anassrs 467 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( 𝑋)) = 𝐴)
1714, 16pm2.61dane 3026 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  wss 3947  c0 4323  cfv 6548  (class class class)co 7420  Atomscatm 38735  HLchlt 38822  +𝑃cpadd 39268  𝑃cpolN 39375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-polarityN 39376  df-psubclN 39408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator