Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pol0N Structured version   Visualization version   GIF version

Theorem 2pol0N 38151
Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
2pol0.o = (⊥𝑃𝐾)
Assertion
Ref Expression
2pol0N (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)

Proof of Theorem 2pol0N
StepHypRef Expression
1 eqid 2736 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 2pol0.o . . . 4 = (⊥𝑃𝐾)
31, 2pol0N 38149 . . 3 (𝐾 ∈ HL → ( ‘∅) = (Atoms‘𝐾))
43fveq2d 6815 . 2 (𝐾 ∈ HL → ( ‘( ‘∅)) = ( ‘(Atoms‘𝐾)))
51, 2pol1N 38150 . 2 (𝐾 ∈ HL → ( ‘(Atoms‘𝐾)) = ∅)
64, 5eqtrd 2776 1 (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  c0 4266  cfv 6465  Atomscatm 37502  HLchlt 37589  𝑃cpolN 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-proset 18087  df-poset 18105  df-plt 18122  df-lub 18138  df-glb 18139  df-join 18140  df-meet 18141  df-p0 18217  df-p1 18218  df-lat 18224  df-clat 18291  df-oposet 37415  df-ol 37417  df-oml 37418  df-covers 37505  df-ats 37506  df-atl 37537  df-cvlat 37561  df-hlat 37590  df-pmap 37744  df-polarityN 38143
This theorem is referenced by:  pcl0N  38162  0psubclN  38183
  Copyright terms: Public domain W3C validator