Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pol0N Structured version   Visualization version   GIF version

Theorem 2pol0N 39861
Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
2pol0.o = (⊥𝑃𝐾)
Assertion
Ref Expression
2pol0N (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)

Proof of Theorem 2pol0N
StepHypRef Expression
1 eqid 2740 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 2pol0.o . . . 4 = (⊥𝑃𝐾)
31, 2pol0N 39859 . . 3 (𝐾 ∈ HL → ( ‘∅) = (Atoms‘𝐾))
43fveq2d 6919 . 2 (𝐾 ∈ HL → ( ‘( ‘∅)) = ( ‘(Atoms‘𝐾)))
51, 2pol1N 39860 . 2 (𝐾 ∈ HL → ( ‘(Atoms‘𝐾)) = ∅)
64, 5eqtrd 2780 1 (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  c0 4352  cfv 6568  Atomscatm 39212  HLchlt 39299  𝑃cpolN 39852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-proset 18359  df-poset 18377  df-plt 18394  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-p0 18489  df-p1 18490  df-lat 18496  df-clat 18563  df-oposet 39125  df-ol 39127  df-oml 39128  df-covers 39215  df-ats 39216  df-atl 39247  df-cvlat 39271  df-hlat 39300  df-pmap 39454  df-polarityN 39853
This theorem is referenced by:  pcl0N  39872  0psubclN  39893
  Copyright terms: Public domain W3C validator