Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pol0N Structured version   Visualization version   GIF version

Theorem 2pol0N 39894
Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
2pol0.o = (⊥𝑃𝐾)
Assertion
Ref Expression
2pol0N (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)

Proof of Theorem 2pol0N
StepHypRef Expression
1 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 2pol0.o . . . 4 = (⊥𝑃𝐾)
31, 2pol0N 39892 . . 3 (𝐾 ∈ HL → ( ‘∅) = (Atoms‘𝐾))
43fveq2d 6826 . 2 (𝐾 ∈ HL → ( ‘( ‘∅)) = ( ‘(Atoms‘𝐾)))
51, 2pol1N 39893 . 2 (𝐾 ∈ HL → ( ‘(Atoms‘𝐾)) = ∅)
64, 5eqtrd 2764 1 (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4284  cfv 6482  Atomscatm 39246  HLchlt 39333  𝑃cpolN 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-pmap 39487  df-polarityN 39886
This theorem is referenced by:  pcl0N  39905  0psubclN  39926
  Copyright terms: Public domain W3C validator