Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pol0N | Structured version Visualization version GIF version |
Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2pol0.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
2pol0N | ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | 2pol0.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | 1, 2 | pol0N 38149 | . . 3 ⊢ (𝐾 ∈ HL → ( ⊥ ‘∅) = (Atoms‘𝐾)) |
4 | 3 | fveq2d 6815 | . 2 ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ( ⊥ ‘(Atoms‘𝐾))) |
5 | 1, 2 | pol1N 38150 | . 2 ⊢ (𝐾 ∈ HL → ( ⊥ ‘(Atoms‘𝐾)) = ∅) |
6 | 4, 5 | eqtrd 2776 | 1 ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∅c0 4266 ‘cfv 6465 Atomscatm 37502 HLchlt 37589 ⊥𝑃cpolN 38142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-proset 18087 df-poset 18105 df-plt 18122 df-lub 18138 df-glb 18139 df-join 18140 df-meet 18141 df-p0 18217 df-p1 18218 df-lat 18224 df-clat 18291 df-oposet 37415 df-ol 37417 df-oml 37418 df-covers 37505 df-ats 37506 df-atl 37537 df-cvlat 37561 df-hlat 37590 df-pmap 37744 df-polarityN 38143 |
This theorem is referenced by: pcl0N 38162 0psubclN 38183 |
Copyright terms: Public domain | W3C validator |