MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfcl Structured version   Visualization version   GIF version

Theorem prfcl 17569
Description: The pairing of functors 𝐹:𝐶𝐷 and 𝐺:𝐶𝐷 is a functor 𝐹, 𝐺⟩:𝐶⟶(𝐷 × 𝐸). (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfcl.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfcl.t 𝑇 = (𝐷 ×c 𝐸)
prfcl.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfcl.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfcl (𝜑𝑃 ∈ (𝐶 Func 𝑇))

Proof of Theorem prfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfcl.p . . . 4 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 eqid 2738 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 prfcl.c . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfcl.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
61, 2, 3, 4, 5prfval 17565 . . 3 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
7 fvex 6687 . . . . . . 7 (Base‘𝐶) ∈ V
87mptex 6996 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
97, 7mpoex 7803 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
108, 9op1std 7724 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
116, 10syl 17 . . . 4 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
128, 9op2ndd 7725 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
136, 12syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
1411, 13opeq12d 4769 . . 3 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
156, 14eqtr4d 2776 . 2 (𝜑𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
16 prfcl.t . . . . 5 𝑇 = (𝐷 ×c 𝐸)
17 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
18 eqid 2738 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1916, 17, 18xpcbas 17544 . . . 4 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
20 eqid 2738 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
21 eqid 2738 . . . 4 (Id‘𝐶) = (Id‘𝐶)
22 eqid 2738 . . . 4 (Id‘𝑇) = (Id‘𝑇)
23 eqid 2738 . . . 4 (comp‘𝐶) = (comp‘𝐶)
24 eqid 2738 . . . 4 (comp‘𝑇) = (comp‘𝑇)
25 funcrcl 17238 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
264, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simpld 498 . . . 4 (𝜑𝐶 ∈ Cat)
2826simprd 499 . . . . 5 (𝜑𝐷 ∈ Cat)
29 funcrcl 17238 . . . . . . 7 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
305, 29syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
3130simprd 499 . . . . 5 (𝜑𝐸 ∈ Cat)
3216, 28, 31xpccat 17556 . . . 4 (𝜑𝑇 ∈ Cat)
33 relfunc 17237 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
34 1st2ndbr 7766 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3533, 4, 34sylancr 590 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
362, 17, 35funcf1 17241 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
3736ffvelrnda 6861 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
38 relfunc 17237 . . . . . . . . 9 Rel (𝐶 Func 𝐸)
39 1st2ndbr 7766 . . . . . . . . 9 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
4038, 5, 39sylancr 590 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
412, 18, 40funcf1 17241 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
4241ffvelrnda 6861 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
4337, 42opelxpd 5563 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
4411, 43fmpt3d 6890 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
45 eqid 2738 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
46 ovex 7203 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4746mptex 6996 . . . . . 6 ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V
4845, 47fnmpoi 7793 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))
4913fneq1d 6431 . . . . 5 (𝜑 → ((2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))))
5048, 49mpbiri 261 . . . 4 (𝜑 → (2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)))
5113oveqd 7187 . . . . . 6 (𝜑 → (𝑥(2nd𝑃)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦))
5245ovmpt4g 7312 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5347, 52mp3an3 1451 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5451, 53sylan9eq 2793 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
55 eqid 2738 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
5635adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
57 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
58 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
592, 3, 55, 56, 57, 58funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6059ffvelrnda 6861 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
61 eqid 2738 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
6240adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
632, 3, 61, 62, 57, 58funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6463ffvelrnda 6861 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6560, 64opelxpd 5563 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
664adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
675adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐶 Func 𝐸))
681, 2, 3, 66, 67, 57prf1 17566 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
691, 2, 3, 66, 67, 58prf1 17566 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
7068, 69oveq12d 7188 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩))
7137adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
7242adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
7336ffvelrnda 6861 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7473adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7541ffvelrnda 6861 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7675adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7716, 17, 18, 55, 61, 71, 72, 74, 76, 20xpchom2 17552 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7870, 77eqtrd 2773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7978adantr 484 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
8065, 79eleqtrrd 2836 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
8154, 80fmpt3d 6890 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
82 eqid 2738 . . . . . . 7 (Id‘𝐷) = (Id‘𝐷)
8335adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
84 simpr 488 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
852, 21, 82, 83, 84funcid 17245 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
86 eqid 2738 . . . . . . 7 (Id‘𝐸) = (Id‘𝐸)
8740adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
882, 21, 86, 87, 84funcid 17245 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘𝑥)))
8985, 88opeq12d 4769 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩ = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
904adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
915adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐸))
9227adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
932, 3, 21, 92, 84catidcl 17056 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
941, 2, 3, 90, 91, 84, 84, 93prf2 17568 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩)
951, 2, 3, 90, 91, 84prf1 17566 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
9695fveq2d 6678 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
9728adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
9831adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
9916, 97, 98, 17, 18, 82, 86, 22, 37, 42xpcid 17555 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10096, 99eqtrd 2773 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10189, 94, 1003eqtr4d 2783 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑇)‘((1st𝑃)‘𝑥)))
102 eqid 2738 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
103353ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
104 simp21 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
105 simp22 1208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
106 simp23 1209 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
107 simp3l 1202 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
108 simp3r 1203 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1092, 3, 23, 102, 103, 104, 105, 106, 107, 108funcco 17246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
110 eqid 2738 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
11153ad2ant1 1134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐺 ∈ (𝐶 Func 𝐸))
11238, 111, 39sylancr 590 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
1132, 3, 23, 110, 112, 104, 105, 106, 107, 108funcco 17246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
114109, 113opeq12d 4769 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩ = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
11543ad2ant1 1134 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
116273ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
1172, 3, 23, 116, 104, 105, 106, 107, 108catcocl 17059 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1181, 2, 3, 115, 111, 104, 106, 117prf2 17568 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩)
1191, 2, 3, 115, 111, 104prf1 17566 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
1201, 2, 3, 115, 111, 105prf1 17566 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
121119, 120opeq12d 4769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩ = ⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩)
1221, 2, 3, 115, 111, 106prf1 17566 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑧) = ⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)
123121, 122oveq12d 7188 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧)) = (⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩))
1241, 2, 3, 115, 111, 105, 106, 108prf2 17568 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩)
1251, 2, 3, 115, 111, 104, 105, 107prf2 17568 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
126123, 124, 125oveq123d 7191 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
127363ad2ant1 1134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
128127, 104ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
129413ad2ant1 1134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
130129, 104ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
131127, 105ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
132129, 105ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
133127, 106ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
134129, 106ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐸))
1352, 3, 55, 103, 104, 105funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
136135, 107ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1372, 3, 61, 112, 104, 105funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
138137, 107ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
1392, 3, 55, 103, 105, 106funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
140139, 108ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
1412, 3, 61, 112, 105, 106funcf2 17243 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
142141, 108ffvelrnd 6862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
14316, 17, 18, 55, 61, 128, 130, 131, 132, 102, 110, 24, 133, 134, 136, 138, 140, 142xpcco2 17553 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
144126, 143eqtrd 2773 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
145114, 118, 1443eqtr4d 2783 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1462, 19, 3, 20, 21, 22, 23, 24, 27, 32, 44, 50, 81, 101, 145isfuncd 17240 . . 3 (𝜑 → (1st𝑃)(𝐶 Func 𝑇)(2nd𝑃))
147 df-br 5031 . . 3 ((1st𝑃)(𝐶 Func 𝑇)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
148146, 147sylib 221 . 2 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
14915, 148eqeltrd 2833 1 (𝜑𝑃 ∈ (𝐶 Func 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3398  cop 4522   class class class wbr 5030  cmpt 5110   × cxp 5523  Rel wrel 5530   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170  cmpo 7172  1st c1st 7712  2nd c2nd 7713  Basecbs 16586  Hom chom 16679  compcco 16680  Catccat 17038  Idccid 17039   Func cfunc 17229   ×c cxpc 17534   ⟨,⟩F cprf 17537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-hom 16692  df-cco 16693  df-cat 17042  df-cid 17043  df-func 17233  df-xpc 17538  df-prf 17541
This theorem is referenced by:  prf1st  17570  prf2nd  17571  uncfcl  17601  uncf1  17602  uncf2  17603  yonedalem1  17638  yonedalem21  17639  yonedalem22  17644
  Copyright terms: Public domain W3C validator