MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfcl Structured version   Visualization version   GIF version

Theorem prfcl 17961
Description: The pairing of functors 𝐹:𝐶𝐷 and 𝐺:𝐶𝐷 is a functor 𝐹, 𝐺⟩:𝐶⟶(𝐷 × 𝐸). (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfcl.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfcl.t 𝑇 = (𝐷 ×c 𝐸)
prfcl.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfcl.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfcl (𝜑𝑃 ∈ (𝐶 Func 𝑇))

Proof of Theorem prfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfcl.p . . . 4 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2736 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 prfcl.c . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfcl.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
61, 2, 3, 4, 5prfval 17957 . . 3 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
7 fvex 6813 . . . . . . 7 (Base‘𝐶) ∈ V
87mptex 7127 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
97, 7mpoex 7948 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
108, 9op1std 7869 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
116, 10syl 17 . . . 4 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
128, 9op2ndd 7870 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
136, 12syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
1411, 13opeq12d 4817 . . 3 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
156, 14eqtr4d 2779 . 2 (𝜑𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
16 prfcl.t . . . . 5 𝑇 = (𝐷 ×c 𝐸)
17 eqid 2736 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
18 eqid 2736 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1916, 17, 18xpcbas 17936 . . . 4 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
20 eqid 2736 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
21 eqid 2736 . . . 4 (Id‘𝐶) = (Id‘𝐶)
22 eqid 2736 . . . 4 (Id‘𝑇) = (Id‘𝑇)
23 eqid 2736 . . . 4 (comp‘𝐶) = (comp‘𝐶)
24 eqid 2736 . . . 4 (comp‘𝑇) = (comp‘𝑇)
25 funcrcl 17619 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
264, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simpld 496 . . . 4 (𝜑𝐶 ∈ Cat)
2826simprd 497 . . . . 5 (𝜑𝐷 ∈ Cat)
29 funcrcl 17619 . . . . . . 7 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
305, 29syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
3130simprd 497 . . . . 5 (𝜑𝐸 ∈ Cat)
3216, 28, 31xpccat 17948 . . . 4 (𝜑𝑇 ∈ Cat)
33 relfunc 17618 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
34 1st2ndbr 7911 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3533, 4, 34sylancr 588 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
362, 17, 35funcf1 17622 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
3736ffvelcdmda 6989 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
38 relfunc 17618 . . . . . . . . 9 Rel (𝐶 Func 𝐸)
39 1st2ndbr 7911 . . . . . . . . 9 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
4038, 5, 39sylancr 588 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
412, 18, 40funcf1 17622 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
4241ffvelcdmda 6989 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
4337, 42opelxpd 5634 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
4411, 43fmpt3d 7018 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
45 eqid 2736 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
46 ovex 7336 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4746mptex 7127 . . . . . 6 ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V
4845, 47fnmpoi 7938 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))
4913fneq1d 6553 . . . . 5 (𝜑 → ((2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))))
5048, 49mpbiri 259 . . . 4 (𝜑 → (2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)))
5113oveqd 7320 . . . . . 6 (𝜑 → (𝑥(2nd𝑃)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦))
5245ovmpt4g 7448 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5347, 52mp3an3 1450 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5451, 53sylan9eq 2796 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
55 eqid 2736 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
5635adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
57 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
58 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
592, 3, 55, 56, 57, 58funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6059ffvelcdmda 6989 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
61 eqid 2736 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
6240adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
632, 3, 61, 62, 57, 58funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6463ffvelcdmda 6989 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6560, 64opelxpd 5634 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
664adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
675adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐶 Func 𝐸))
681, 2, 3, 66, 67, 57prf1 17958 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
691, 2, 3, 66, 67, 58prf1 17958 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
7068, 69oveq12d 7321 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩))
7137adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
7242adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
7336ffvelcdmda 6989 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7473adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7541ffvelcdmda 6989 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7675adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7716, 17, 18, 55, 61, 71, 72, 74, 76, 20xpchom2 17944 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7870, 77eqtrd 2776 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7978adantr 482 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
8065, 79eleqtrrd 2840 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
8154, 80fmpt3d 7018 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
82 eqid 2736 . . . . . . 7 (Id‘𝐷) = (Id‘𝐷)
8335adantr 482 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
84 simpr 486 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
852, 21, 82, 83, 84funcid 17626 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
86 eqid 2736 . . . . . . 7 (Id‘𝐸) = (Id‘𝐸)
8740adantr 482 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
882, 21, 86, 87, 84funcid 17626 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘𝑥)))
8985, 88opeq12d 4817 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩ = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
904adantr 482 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
915adantr 482 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐸))
9227adantr 482 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
932, 3, 21, 92, 84catidcl 17432 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
941, 2, 3, 90, 91, 84, 84, 93prf2 17960 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩)
951, 2, 3, 90, 91, 84prf1 17958 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
9695fveq2d 6804 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
9728adantr 482 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
9831adantr 482 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
9916, 97, 98, 17, 18, 82, 86, 22, 37, 42xpcid 17947 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10096, 99eqtrd 2776 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10189, 94, 1003eqtr4d 2786 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑇)‘((1st𝑃)‘𝑥)))
102 eqid 2736 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
103353ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
104 simp21 1206 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
105 simp22 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
106 simp23 1208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
107 simp3l 1201 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
108 simp3r 1202 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1092, 3, 23, 102, 103, 104, 105, 106, 107, 108funcco 17627 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
110 eqid 2736 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
11153ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐺 ∈ (𝐶 Func 𝐸))
11238, 111, 39sylancr 588 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
1132, 3, 23, 110, 112, 104, 105, 106, 107, 108funcco 17627 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
114109, 113opeq12d 4817 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩ = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
11543ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
116273ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
1172, 3, 23, 116, 104, 105, 106, 107, 108catcocl 17435 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1181, 2, 3, 115, 111, 104, 106, 117prf2 17960 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩)
1191, 2, 3, 115, 111, 104prf1 17958 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
1201, 2, 3, 115, 111, 105prf1 17958 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
121119, 120opeq12d 4817 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩ = ⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩)
1221, 2, 3, 115, 111, 106prf1 17958 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑧) = ⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)
123121, 122oveq12d 7321 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧)) = (⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩))
1241, 2, 3, 115, 111, 105, 106, 108prf2 17960 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩)
1251, 2, 3, 115, 111, 104, 105, 107prf2 17960 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
126123, 124, 125oveq123d 7324 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
127363ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
128127, 104ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
129413ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
130129, 104ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
131127, 105ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
132129, 105ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
133127, 106ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
134129, 106ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐸))
1352, 3, 55, 103, 104, 105funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
136135, 107ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1372, 3, 61, 112, 104, 105funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
138137, 107ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
1392, 3, 55, 103, 105, 106funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
140139, 108ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
1412, 3, 61, 112, 105, 106funcf2 17624 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
142141, 108ffvelcdmd 6990 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
14316, 17, 18, 55, 61, 128, 130, 131, 132, 102, 110, 24, 133, 134, 136, 138, 140, 142xpcco2 17945 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
144126, 143eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
145114, 118, 1443eqtr4d 2786 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1462, 19, 3, 20, 21, 22, 23, 24, 27, 32, 44, 50, 81, 101, 145isfuncd 17621 . . 3 (𝜑 → (1st𝑃)(𝐶 Func 𝑇)(2nd𝑃))
147 df-br 5082 . . 3 ((1st𝑃)(𝐶 Func 𝑇)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
148146, 147sylib 217 . 2 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
14915, 148eqeltrd 2837 1 (𝜑𝑃 ∈ (𝐶 Func 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  cop 4571   class class class wbr 5081  cmpt 5164   × cxp 5594  Rel wrel 5601   Fn wfn 6449  wf 6450  cfv 6454  (class class class)co 7303  cmpo 7305  1st c1st 7857  2nd c2nd 7858  Basecbs 16953  Hom chom 17014  compcco 17015  Catccat 17414  Idccid 17415   Func cfunc 17610   ×c cxpc 17926   ⟨,⟩F cprf 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-om 7741  df-1st 7859  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-rdg 8268  df-1o 8324  df-er 8525  df-map 8644  df-ixp 8713  df-en 8761  df-dom 8762  df-sdom 8763  df-fin 8764  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-nn 12016  df-2 12078  df-3 12079  df-4 12080  df-5 12081  df-6 12082  df-7 12083  df-8 12084  df-9 12085  df-n0 12276  df-z 12362  df-dec 12480  df-uz 12625  df-fz 13282  df-struct 16889  df-slot 16924  df-ndx 16936  df-base 16954  df-hom 17027  df-cco 17028  df-cat 17418  df-cid 17419  df-func 17614  df-xpc 17930  df-prf 17933
This theorem is referenced by:  prf1st  17962  prf2nd  17963  uncfcl  17994  uncf1  17995  uncf2  17996  yonedalem1  18031  yonedalem21  18032  yonedalem22  18037
  Copyright terms: Public domain W3C validator