MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfcl Structured version   Visualization version   GIF version

Theorem prfcl 18165
Description: The pairing of functors 𝐹:𝐶𝐷 and 𝐺:𝐶𝐷 is a functor 𝐹, 𝐺⟩:𝐶⟶(𝐷 × 𝐸). (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfcl.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfcl.t 𝑇 = (𝐷 ×c 𝐸)
prfcl.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfcl.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfcl (𝜑𝑃 ∈ (𝐶 Func 𝑇))

Proof of Theorem prfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfcl.p . . . 4 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 prfcl.c . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 prfcl.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
61, 2, 3, 4, 5prfval 18161 . . 3 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
7 fvex 6904 . . . . . . 7 (Base‘𝐶) ∈ V
87mptex 7227 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
97, 7mpoex 8070 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
108, 9op1std 7989 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
116, 10syl 17 . . . 4 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
128, 9op2ndd 7990 . . . . 5 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
136, 12syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
1411, 13opeq12d 4881 . . 3 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
156, 14eqtr4d 2774 . 2 (𝜑𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
16 prfcl.t . . . . 5 𝑇 = (𝐷 ×c 𝐸)
17 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
18 eqid 2731 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1916, 17, 18xpcbas 18140 . . . 4 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
20 eqid 2731 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
21 eqid 2731 . . . 4 (Id‘𝐶) = (Id‘𝐶)
22 eqid 2731 . . . 4 (Id‘𝑇) = (Id‘𝑇)
23 eqid 2731 . . . 4 (comp‘𝐶) = (comp‘𝐶)
24 eqid 2731 . . . 4 (comp‘𝑇) = (comp‘𝑇)
25 funcrcl 17820 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
264, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
2826simprd 495 . . . . 5 (𝜑𝐷 ∈ Cat)
29 funcrcl 17820 . . . . . . 7 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
305, 29syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
3130simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
3216, 28, 31xpccat 18152 . . . 4 (𝜑𝑇 ∈ Cat)
33 relfunc 17819 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
34 1st2ndbr 8032 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3533, 4, 34sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
362, 17, 35funcf1 17823 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
3736ffvelcdmda 7086 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
38 relfunc 17819 . . . . . . . . 9 Rel (𝐶 Func 𝐸)
39 1st2ndbr 8032 . . . . . . . . 9 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
4038, 5, 39sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
412, 18, 40funcf1 17823 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
4241ffvelcdmda 7086 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
4337, 42opelxpd 5715 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
4411, 43fmpt3d 7117 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
45 eqid 2731 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
46 ovex 7445 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4746mptex 7227 . . . . . 6 ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V
4845, 47fnmpoi 8060 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))
4913fneq1d 6642 . . . . 5 (𝜑 → ((2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) Fn ((Base‘𝐶) × (Base‘𝐶))))
5048, 49mpbiri 258 . . . 4 (𝜑 → (2nd𝑃) Fn ((Base‘𝐶) × (Base‘𝐶)))
5113oveqd 7429 . . . . . 6 (𝜑 → (𝑥(2nd𝑃)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦))
5245ovmpt4g 7558 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5347, 52mp3an3 1449 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5451, 53sylan9eq 2791 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦) = ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
55 eqid 2731 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
5635adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
57 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
58 simprr 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
592, 3, 55, 56, 57, 58funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6059ffvelcdmda 7086 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
61 eqid 2731 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
6240adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
632, 3, 61, 62, 57, 58funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6463ffvelcdmda 7086 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
6560, 64opelxpd 5715 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
664adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
675adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐶 Func 𝐸))
681, 2, 3, 66, 67, 57prf1 18162 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
691, 2, 3, 66, 67, 58prf1 18162 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
7068, 69oveq12d 7430 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩))
7137adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
7242adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
7336ffvelcdmda 7086 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7473adantrl 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
7541ffvelcdmda 7086 . . . . . . . . . 10 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7675adantrl 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
7716, 17, 18, 55, 61, 71, 72, 74, 76, 20xpchom2 18148 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(Hom ‘𝑇)⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7870, 77eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
7978adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)) = ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) × (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦))))
8065, 79eleqtrrd 2835 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩ ∈ (((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
8154, 80fmpt3d 7117 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘𝑇)((1st𝑃)‘𝑦)))
82 eqid 2731 . . . . . . 7 (Id‘𝐷) = (Id‘𝐷)
8335adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
84 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
852, 21, 82, 83, 84funcid 17827 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
86 eqid 2731 . . . . . . 7 (Id‘𝐸) = (Id‘𝐸)
8740adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
882, 21, 86, 87, 84funcid 17827 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘𝑥)))
8985, 88opeq12d 4881 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩ = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
904adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
915adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐸))
9227adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
932, 3, 21, 92, 84catidcl 17633 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
941, 2, 3, 90, 91, 84, 84, 93prf2 18164 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ⟨((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))⟩)
951, 2, 3, 90, 91, 84prf1 18162 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
9695fveq2d 6895 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
9728adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
9831adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
9916, 97, 98, 17, 18, 82, 86, 22, 37, 42xpcid 18151 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10096, 99eqtrd 2771 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st𝑃)‘𝑥)) = ⟨((Id‘𝐷)‘((1st𝐹)‘𝑥)), ((Id‘𝐸)‘((1st𝐺)‘𝑥))⟩)
10189, 94, 1003eqtr4d 2781 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑇)‘((1st𝑃)‘𝑥)))
102 eqid 2731 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
103353ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
104 simp21 1205 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
105 simp22 1206 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
106 simp23 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
107 simp3l 1200 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
108 simp3r 1201 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1092, 3, 23, 102, 103, 104, 105, 106, 107, 108funcco 17828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
110 eqid 2731 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
11153ad2ant1 1132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐺 ∈ (𝐶 Func 𝐸))
11238, 111, 39sylancr 586 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
1132, 3, 23, 110, 112, 104, 105, 106, 107, 108funcco 17828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
114109, 113opeq12d 4881 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩ = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
11543ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
116273ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
1172, 3, 23, 116, 104, 105, 106, 107, 108catcocl 17636 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1181, 2, 3, 115, 111, 104, 106, 117prf2 18164 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ⟨((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))⟩)
1191, 2, 3, 115, 111, 104prf1 18162 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑥) = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
1201, 2, 3, 115, 111, 105prf1 18162 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑦) = ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩)
121119, 120opeq12d 4881 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩ = ⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩)
1221, 2, 3, 115, 111, 106prf1 18162 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝑃)‘𝑧) = ⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)
123121, 122oveq12d 7430 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧)) = (⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩))
1241, 2, 3, 115, 111, 105, 106, 108prf2 18164 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩)
1251, 2, 3, 115, 111, 104, 105, 107prf2 18164 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
126123, 124, 125oveq123d 7433 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
127363ad2ant1 1132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
128127, 104ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
129413ad2ant1 1132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
130129, 104ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
131127, 105ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
132129, 105ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐸))
133127, 106ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
134129, 106ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐸))
1352, 3, 55, 103, 104, 105funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
136135, 107ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1372, 3, 61, 112, 104, 105funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
138137, 107ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
1392, 3, 55, 103, 105, 106funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
140139, 108ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
1412, 3, 61, 112, 105, 106funcf2 17825 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
142141, 108ffvelcdmd 7087 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐸)((1st𝐺)‘𝑧)))
14316, 17, 18, 55, 61, 128, 130, 131, 132, 102, 110, 24, 133, 134, 136, 138, 140, 142xpcco2 18149 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨((𝑦(2nd𝐹)𝑧)‘𝑔), ((𝑦(2nd𝐺)𝑧)‘𝑔)⟩(⟨⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩, ⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩⟩(comp‘𝑇)⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩)⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
144126, 143eqtrd 2771 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ⟨(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)), (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐸)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓))⟩)
145114, 118, 1443eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st𝑃)‘𝑥), ((1st𝑃)‘𝑦)⟩(comp‘𝑇)((1st𝑃)‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1462, 19, 3, 20, 21, 22, 23, 24, 27, 32, 44, 50, 81, 101, 145isfuncd 17822 . . 3 (𝜑 → (1st𝑃)(𝐶 Func 𝑇)(2nd𝑃))
147 df-br 5149 . . 3 ((1st𝑃)(𝐶 Func 𝑇)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
148146, 147sylib 217 . 2 (𝜑 → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ (𝐶 Func 𝑇))
14915, 148eqeltrd 2832 1 (𝜑𝑃 ∈ (𝐶 Func 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634   class class class wbr 5148  cmpt 5231   × cxp 5674  Rel wrel 5681   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978  Basecbs 17151  Hom chom 17215  compcco 17216  Catccat 17615  Idccid 17616   Func cfunc 17811   ×c cxpc 18130   ⟨,⟩F cprf 18133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-hom 17228  df-cco 17229  df-cat 17619  df-cid 17620  df-func 17815  df-xpc 18134  df-prf 18137
This theorem is referenced by:  prf1st  18166  prf2nd  18167  uncfcl  18198  uncf1  18199  uncf2  18200  yonedalem1  18235  yonedalem21  18236  yonedalem22  18241
  Copyright terms: Public domain W3C validator