Step | Hyp | Ref
| Expression |
1 | | prfcl.p |
. . . 4
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
4 | | prfcl.c |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
5 | | prfcl.d |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
6 | 1, 2, 3, 4, 5 | prfval 17832 |
. . 3
⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
7 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝐶)
∈ V |
8 | 7 | mptex 7081 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
9 | 7, 7 | mpoex 7893 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
10 | 8, 9 | op1std 7814 |
. . . . 5
⊢ (𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (1st
‘𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
11 | 6, 10 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
12 | 8, 9 | op2ndd 7815 |
. . . . 5
⊢ (𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (2nd
‘𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
13 | 6, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (2nd
‘𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
14 | 11, 13 | opeq12d 4809 |
. . 3
⊢ (𝜑 → 〈(1st
‘𝑃), (2nd
‘𝑃)〉 =
〈(𝑥 ∈
(Base‘𝐶) ↦
〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
15 | 6, 14 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
16 | | prfcl.t |
. . . . 5
⊢ 𝑇 = (𝐷 ×c 𝐸) |
17 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
18 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐸) =
(Base‘𝐸) |
19 | 16, 17, 18 | xpcbas 17811 |
. . . 4
⊢
((Base‘𝐷)
× (Base‘𝐸)) =
(Base‘𝑇) |
20 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝑇) = (Hom
‘𝑇) |
21 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
22 | | eqid 2738 |
. . . 4
⊢
(Id‘𝑇) =
(Id‘𝑇) |
23 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
24 | | eqid 2738 |
. . . 4
⊢
(comp‘𝑇) =
(comp‘𝑇) |
25 | | funcrcl 17494 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
26 | 4, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
27 | 26 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
28 | 26 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ Cat) |
29 | | funcrcl 17494 |
. . . . . . 7
⊢ (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
30 | 5, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
31 | 30 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
32 | 16, 28, 31 | xpccat 17823 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ Cat) |
33 | | relfunc 17493 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) |
34 | | 1st2ndbr 7856 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
35 | 33, 4, 34 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
36 | 2, 17, 35 | funcf1 17497 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
37 | 36 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
38 | | relfunc 17493 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐸) |
39 | | 1st2ndbr 7856 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
40 | 38, 5, 39 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
41 | 2, 18, 40 | funcf1 17497 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐸)) |
42 | 41 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
43 | 37, 42 | opelxpd 5618 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 ∈ ((Base‘𝐷) × (Base‘𝐸))) |
44 | 11, 43 | fmpt3d 6972 |
. . . 4
⊢ (𝜑 → (1st
‘𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸))) |
45 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
46 | | ovex 7288 |
. . . . . . 7
⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V |
47 | 46 | mptex 7081 |
. . . . . 6
⊢ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) ∈ V |
48 | 45, 47 | fnmpoi 7883 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) Fn ((Base‘𝐶) × (Base‘𝐶)) |
49 | 13 | fneq1d 6510 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑃) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
50 | 48, 49 | mpbiri 257 |
. . . 4
⊢ (𝜑 → (2nd
‘𝑃) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
51 | 13 | oveqd 7272 |
. . . . . 6
⊢ (𝜑 → (𝑥(2nd ‘𝑃)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦)) |
52 | 45 | ovmpt4g 7398 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
53 | 47, 52 | mp3an3 1448 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
54 | 51, 53 | sylan9eq 2799 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑃)𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
55 | | eqid 2738 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
56 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
57 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
58 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
59 | 2, 3, 55, 56, 57, 58 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
60 | 59 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐹)𝑦)‘ℎ) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
61 | | eqid 2738 |
. . . . . . . . 9
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
62 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
63 | 2, 3, 61, 62, 57, 58 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
64 | 63 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘ℎ) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
65 | 60, 64 | opelxpd 5618 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 ∈ ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
66 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
67 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐶 Func 𝐸)) |
68 | 1, 2, 3, 66, 67, 57 | prf1 17833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
69 | 1, 2, 3, 66, 67, 58 | prf1 17833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝑃)‘𝑦) = 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) |
70 | 68, 69 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = (〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(Hom ‘𝑇)〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉)) |
71 | 37 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
72 | 42 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
73 | 36 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
74 | 73 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
75 | 41 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
76 | 75 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
77 | 16, 17, 18, 55, 61, 71, 72, 74, 76, 20 | xpchom2 17819 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(Hom ‘𝑇)〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
78 | 70, 77 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
79 | 78 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
80 | 65, 79 | eleqtrrd 2842 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 ∈ (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦))) |
81 | 54, 80 | fmpt3d 6972 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦))) |
82 | | eqid 2738 |
. . . . . . 7
⊢
(Id‘𝐷) =
(Id‘𝐷) |
83 | 35 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
84 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
85 | 2, 21, 82, 83, 84 | funcid 17501 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
86 | | eqid 2738 |
. . . . . . 7
⊢
(Id‘𝐸) =
(Id‘𝐸) |
87 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
88 | 2, 21, 86, 87, 84 | funcid 17501 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))) |
89 | 85, 88 | opeq12d 4809 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))〉 = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
90 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
91 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
92 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
93 | 2, 3, 21, 92, 84 | catidcl 17308 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
94 | 1, 2, 3, 90, 91, 84, 84, 93 | prf2 17835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = 〈((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))〉) |
95 | 1, 2, 3, 90, 91, 84 | prf1 17833 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
96 | 95 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥)) = ((Id‘𝑇)‘〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
97 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
98 | 31 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
99 | 16, 97, 98, 17, 18, 82, 86, 22, 37, 42 | xpcid 17822 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
100 | 96, 99 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥)) = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
101 | 89, 94, 100 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥))) |
102 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
103 | 35 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
104 | | simp21 1204 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
105 | | simp22 1205 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
106 | | simp23 1206 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
107 | | simp3l 1199 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
108 | | simp3r 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
109 | 2, 3, 23, 102, 103, 104, 105, 106, 107, 108 | funcco 17502 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
110 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝐸) =
(comp‘𝐸) |
111 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐺 ∈ (𝐶 Func 𝐸)) |
112 | 38, 111, 39 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
113 | 2, 3, 23, 110, 112, 104, 105, 106, 107, 108 | funcco 17502 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))) |
114 | 109, 113 | opeq12d 4809 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 〈((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))〉 = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
115 | 4 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
116 | 27 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
117 | 2, 3, 23, 116, 104, 105, 106, 107, 108 | catcocl 17311 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
118 | 1, 2, 3, 115, 111, 104, 106, 117 | prf2 17835 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = 〈((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))〉) |
119 | 1, 2, 3, 115, 111, 104 | prf1 17833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
120 | 1, 2, 3, 115, 111, 105 | prf1 17833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑦) = 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) |
121 | 119, 120 | opeq12d 4809 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 〈((1st
‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉 = 〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉) |
122 | 1, 2, 3, 115, 111, 106 | prf1 17833 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑧) = 〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉) |
123 | 121, 122 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (〈((1st
‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧)) = (〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)) |
124 | 1, 2, 3, 115, 111, 105, 106, 108 | prf2 17835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝑃)𝑧)‘𝑔) = 〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉) |
125 | 1, 2, 3, 115, 111, 104, 105, 107 | prf2 17835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑦)‘𝑓) = 〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉) |
126 | 123, 124,
125 | oveq123d 7276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓)) = (〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉(〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉)) |
127 | 36 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
128 | 127, 104 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
129 | 41 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺):(Base‘𝐶)⟶(Base‘𝐸)) |
130 | 129, 104 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
131 | 127, 105 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
132 | 129, 105 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
133 | 127, 106 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑧) ∈ (Base‘𝐷)) |
134 | 129, 106 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑧) ∈ (Base‘𝐸)) |
135 | 2, 3, 55, 103, 104, 105 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
136 | 135, 107 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
137 | 2, 3, 61, 112, 104, 105 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
138 | 137, 107 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
139 | 2, 3, 55, 103, 105, 106 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
140 | 139, 108 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐹)𝑧)‘𝑔) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
141 | 2, 3, 61, 112, 105, 106 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐺)‘𝑦)(Hom ‘𝐸)((1st ‘𝐺)‘𝑧))) |
142 | 141, 108 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐺)𝑧)‘𝑔) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐸)((1st ‘𝐺)‘𝑧))) |
143 | 16, 17, 18, 55, 61, 128, 130, 131, 132, 102, 110, 24, 133, 134, 136, 138, 140, 142 | xpcco2 17820 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉(〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉) = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
144 | 126, 143 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓)) = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
145 | 114, 118,
144 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓))) |
146 | 2, 19, 3, 20, 21, 22, 23, 24, 27, 32, 44, 50, 81, 101, 145 | isfuncd 17496 |
. . 3
⊢ (𝜑 → (1st
‘𝑃)(𝐶 Func 𝑇)(2nd ‘𝑃)) |
147 | | df-br 5071 |
. . 3
⊢
((1st ‘𝑃)(𝐶 Func 𝑇)(2nd ‘𝑃) ↔ 〈(1st ‘𝑃), (2nd ‘𝑃)〉 ∈ (𝐶 Func 𝑇)) |
148 | 146, 147 | sylib 217 |
. 2
⊢ (𝜑 → 〈(1st
‘𝑃), (2nd
‘𝑃)〉 ∈
(𝐶 Func 𝑇)) |
149 | 15, 148 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝑃 ∈ (𝐶 Func 𝑇)) |