Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2lem1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2lem1 45748
Description: Lemma for fmtnoprmfac2 45749. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2lem1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)

Proof of Theorem fmtnoprmfac2lem1
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12809 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eldifi 4086 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3 id 22 . . 3 (𝑃 ∥ (FermatNo‘𝑁) → 𝑃 ∥ (FermatNo‘𝑁))
4 fmtnoprmfac1 45747 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
51, 2, 3, 4syl3an 1160 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
6 2z 12535 . . . . . 6 2 ∈ ℤ
7 simp2 1137 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ (ℙ ∖ {2}))
8 lgsvalmod 26664 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
98eqcomd 2742 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
106, 7, 9sylancr 587 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
1110ad2antrr 724 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
12 nncn 12161 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1312adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
14 2nn 12226 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
16 eluzge2nn0 12812 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
17 peano2nn0 12453 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
1915, 18nnexpcld 14148 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
2019nncnd 12169 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
2120adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
2213, 21mulcomd 11176 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = ((2↑(𝑁 + 1)) · 𝑛))
23 8cn 12250 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
2423a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ∈ ℂ)
25 0re 11157 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
26 8pos 12265 . . . . . . . . . . . . . . . . 17 0 < 8
2725, 26gtneii 11267 . . . . . . . . . . . . . . . 16 8 ≠ 0
2827a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ≠ 0)
2921, 24, 28divcan2d 11933 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (8 · ((2↑(𝑁 + 1)) / 8)) = (2↑(𝑁 + 1)))
3029eqcomd 2742 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) = (8 · ((2↑(𝑁 + 1)) / 8)))
3130oveq1d 7372 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) · 𝑛) = ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛))
3223a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℂ)
3327a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ≠ 0)
3420, 32, 33divcld 11931 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3534adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3624, 35, 13mulassd 11178 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3722, 31, 363eqtrd 2780 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3837oveq1d 7372 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (2↑(𝑁 + 1))) + 1) = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1))
3938eqeq2d 2747 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) ↔ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)))
40 oveq1 7364 . . . . . . . . . . . 12 (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
4140adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
42 3m1e2 12281 . . . . . . . . . . . . . . . . . . . . . . 23 (3 − 1) = 2
43 eluzle 12776 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
4442, 43eqbrtrid 5140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (3 − 1) ≤ 𝑁)
45 3re 12233 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
47 1red 11156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
48 eluzelre 12774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
4946, 47, 48lesubaddd 11752 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → ((3 − 1) ≤ 𝑁 ↔ 3 ≤ (𝑁 + 1)))
5044, 49mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ≤ (𝑁 + 1))
51 3nn0 12431 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
52 nn0sub 12463 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5351, 18, 52sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5450, 53mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) − 3) ∈ ℕ0)
5515, 54nnexpcld 14148 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℕ)
5655nnzd 12526 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℤ)
57 oveq2 7365 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (2↑((𝑁 + 1) − 3)) → (8 · 𝑘) = (8 · (2↑((𝑁 + 1) − 3))))
5857eqeq1d 2738 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (2↑((𝑁 + 1) − 3)) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
5958adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = (2↑((𝑁 + 1) − 3))) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
60 cu2 14104 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) = 8
6160eqcomi 2745 . . . . . . . . . . . . . . . . . . . . 21 8 = (2↑3)
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 8 = (2↑3))
63 2cnne0 12363 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 ≠ 0)
6463a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
65 eluzelz 12773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6665peano2zd 12610 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℤ)
67 3z 12536 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℤ)
69 expsub 14016 . . . . . . . . . . . . . . . . . . . . 21 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ 3 ∈ ℤ)) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7064, 66, 68, 69syl12anc 835 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7162, 70oveq12d 7375 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))))
72 nnexpcl 13980 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℕ ∧ 3 ∈ ℕ0) → (2↑3) ∈ ℕ)
7314, 51, 72mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ∈ ℕ
7473nncni 12163 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ∈ ℂ
7574a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ∈ ℂ)
76 2cn 12228 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
77 2ne0 12257 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
78 expne0i 14000 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ) → (2↑3) ≠ 0)
7976, 77, 67, 78mp3an 1461 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ≠ 0)
8120, 75, 80divcan2d 11933 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))) = (2↑(𝑁 + 1)))
8271, 81eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1)))
8356, 59, 82rspcedvd 3583 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)))
84 8nn 12248 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
85 2nn0 12430 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
8786, 18nn0expcld 14149 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
8887nn0zd 12525 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℤ)
89 zdiv 12573 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℕ ∧ (2↑(𝑁 + 1)) ∈ ℤ) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9084, 88, 89sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9183, 90mpbid 231 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
9291adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
93 nnz 12520 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9493adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
9592, 94zmulcld 12613 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ)
9684nnzi 12527 . . . . . . . . . . . . . . 15 8 ∈ ℤ
97 2re 12227 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
98 8re 12249 . . . . . . . . . . . . . . . 16 8 ∈ ℝ
99 2lt8 12350 . . . . . . . . . . . . . . . 16 2 < 8
10097, 98, 99ltleii 11278 . . . . . . . . . . . . . . 15 2 ≤ 8
101 eluz2 12769 . . . . . . . . . . . . . . 15 (8 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8))
1026, 96, 100, 101mpbir3an 1341 . . . . . . . . . . . . . 14 8 ∈ (ℤ‘2)
103 mulp1mod1 13817 . . . . . . . . . . . . . 14 (((((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ ∧ 8 ∈ (ℤ‘2)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
10495, 102, 103sylancl 586 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
105 1nn 12164 . . . . . . . . . . . . . 14 1 ∈ ℕ
106 prid1g 4721 . . . . . . . . . . . . . 14 (1 ∈ ℕ → 1 ∈ {1, 7})
107105, 106mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 1 ∈ {1, 7})
108104, 107eqeltrd 2838 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
109108adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
11041, 109eqeltrd 2838 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) ∈ {1, 7})
111110ex 413 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) ∈ {1, 7}))
11239, 111sylbid 239 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
1131123ad2antl1 1185 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
114113imp 407 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (𝑃 mod 8) ∈ {1, 7})
115 2lgs 26755 . . . . . . . . 9 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1162, 115syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1171163ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
118117ad2antrr 724 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
119114, 118mpbird 256 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (2 /L 𝑃) = 1)
120119oveq1d 7372 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
121 prmuz2 16572 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
122 eluzelre 12774 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
123 eluz2gt1 12845 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
124122, 123jca 512 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
125121, 124syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
126 1mod 13808 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1272, 125, 1263syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
1281273ad2ant2 1134 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (1 mod 𝑃) = 1)
129128ad2antrr 724 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (1 mod 𝑃) = 1)
13011, 120, 1293eqtrd 2780 . . 3 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
131130rexlimdva2 3154 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
1325, 131mpd 15 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586  {cpr 4588   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  7c7 12213  8c8 12214  0cn0 12413  cz 12499  cuz 12763   mod cmo 13774  cexp 13967  cdvds 16136  cprime 16547   /L clgs 26642  FermatNocfmtno 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789  df-dvds 16137  df-gcd 16375  df-prm 16548  df-odz 16637  df-phi 16638  df-pc 16709  df-lgs 26643  df-fmtno 45710
This theorem is referenced by:  fmtnoprmfac2  45749
  Copyright terms: Public domain W3C validator