Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2lem1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2lem1 45018
Description: Lemma for fmtnoprmfac2 45019. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2lem1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)

Proof of Theorem fmtnoprmfac2lem1
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12624 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eldifi 4061 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3 id 22 . . 3 (𝑃 ∥ (FermatNo‘𝑁) → 𝑃 ∥ (FermatNo‘𝑁))
4 fmtnoprmfac1 45017 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
51, 2, 3, 4syl3an 1159 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
6 2z 12352 . . . . . 6 2 ∈ ℤ
7 simp2 1136 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ (ℙ ∖ {2}))
8 lgsvalmod 26464 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
98eqcomd 2744 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
106, 7, 9sylancr 587 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
1110ad2antrr 723 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
12 nncn 11981 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1312adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
14 2nn 12046 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
16 eluzge2nn0 12627 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
17 peano2nn0 12273 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
1915, 18nnexpcld 13960 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
2019nncnd 11989 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
2120adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
2213, 21mulcomd 10996 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = ((2↑(𝑁 + 1)) · 𝑛))
23 8cn 12070 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
2423a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ∈ ℂ)
25 0re 10977 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
26 8pos 12085 . . . . . . . . . . . . . . . . 17 0 < 8
2725, 26gtneii 11087 . . . . . . . . . . . . . . . 16 8 ≠ 0
2827a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ≠ 0)
2921, 24, 28divcan2d 11753 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (8 · ((2↑(𝑁 + 1)) / 8)) = (2↑(𝑁 + 1)))
3029eqcomd 2744 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) = (8 · ((2↑(𝑁 + 1)) / 8)))
3130oveq1d 7290 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) · 𝑛) = ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛))
3223a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℂ)
3327a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ≠ 0)
3420, 32, 33divcld 11751 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3534adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3624, 35, 13mulassd 10998 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3722, 31, 363eqtrd 2782 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3837oveq1d 7290 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (2↑(𝑁 + 1))) + 1) = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1))
3938eqeq2d 2749 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) ↔ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)))
40 oveq1 7282 . . . . . . . . . . . 12 (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
4140adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
42 3m1e2 12101 . . . . . . . . . . . . . . . . . . . . . . 23 (3 − 1) = 2
43 eluzle 12595 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
4442, 43eqbrtrid 5109 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (3 − 1) ≤ 𝑁)
45 3re 12053 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
47 1red 10976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
48 eluzelre 12593 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
4946, 47, 48lesubaddd 11572 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → ((3 − 1) ≤ 𝑁 ↔ 3 ≤ (𝑁 + 1)))
5044, 49mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ≤ (𝑁 + 1))
51 3nn0 12251 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
52 nn0sub 12283 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5351, 18, 52sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5450, 53mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) − 3) ∈ ℕ0)
5515, 54nnexpcld 13960 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℕ)
5655nnzd 12425 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℤ)
57 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (2↑((𝑁 + 1) − 3)) → (8 · 𝑘) = (8 · (2↑((𝑁 + 1) − 3))))
5857eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (2↑((𝑁 + 1) − 3)) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
5958adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = (2↑((𝑁 + 1) − 3))) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
60 cu2 13917 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) = 8
6160eqcomi 2747 . . . . . . . . . . . . . . . . . . . . 21 8 = (2↑3)
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 8 = (2↑3))
63 2cnne0 12183 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 ≠ 0)
6463a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
65 eluzelz 12592 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6665peano2zd 12429 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℤ)
67 3z 12353 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℤ)
69 expsub 13831 . . . . . . . . . . . . . . . . . . . . 21 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ 3 ∈ ℤ)) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7064, 66, 68, 69syl12anc 834 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7162, 70oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))))
72 nnexpcl 13795 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℕ ∧ 3 ∈ ℕ0) → (2↑3) ∈ ℕ)
7314, 51, 72mp2an 689 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ∈ ℕ
7473nncni 11983 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ∈ ℂ
7574a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ∈ ℂ)
76 2cn 12048 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
77 2ne0 12077 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
78 expne0i 13815 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ) → (2↑3) ≠ 0)
7976, 77, 67, 78mp3an 1460 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ≠ 0)
8120, 75, 80divcan2d 11753 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))) = (2↑(𝑁 + 1)))
8271, 81eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1)))
8356, 59, 82rspcedvd 3563 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)))
84 8nn 12068 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
85 2nn0 12250 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
8786, 18nn0expcld 13961 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
8887nn0zd 12424 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℤ)
89 zdiv 12390 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℕ ∧ (2↑(𝑁 + 1)) ∈ ℤ) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9084, 88, 89sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9183, 90mpbid 231 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
9291adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
93 nnz 12342 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9493adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
9592, 94zmulcld 12432 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ)
9684nnzi 12344 . . . . . . . . . . . . . . 15 8 ∈ ℤ
97 2re 12047 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
98 8re 12069 . . . . . . . . . . . . . . . 16 8 ∈ ℝ
99 2lt8 12170 . . . . . . . . . . . . . . . 16 2 < 8
10097, 98, 99ltleii 11098 . . . . . . . . . . . . . . 15 2 ≤ 8
101 eluz2 12588 . . . . . . . . . . . . . . 15 (8 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8))
1026, 96, 100, 101mpbir3an 1340 . . . . . . . . . . . . . 14 8 ∈ (ℤ‘2)
103 mulp1mod1 13632 . . . . . . . . . . . . . 14 (((((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ ∧ 8 ∈ (ℤ‘2)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
10495, 102, 103sylancl 586 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
105 1nn 11984 . . . . . . . . . . . . . 14 1 ∈ ℕ
106 prid1g 4696 . . . . . . . . . . . . . 14 (1 ∈ ℕ → 1 ∈ {1, 7})
107105, 106mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 1 ∈ {1, 7})
108104, 107eqeltrd 2839 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
109108adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
11041, 109eqeltrd 2839 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) ∈ {1, 7})
111110ex 413 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) ∈ {1, 7}))
11239, 111sylbid 239 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
1131123ad2antl1 1184 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
114113imp 407 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (𝑃 mod 8) ∈ {1, 7})
115 2lgs 26555 . . . . . . . . 9 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1162, 115syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1171163ad2ant2 1133 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
118117ad2antrr 723 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
119114, 118mpbird 256 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (2 /L 𝑃) = 1)
120119oveq1d 7290 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
121 prmuz2 16401 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
122 eluzelre 12593 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
123 eluz2gt1 12660 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
124122, 123jca 512 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
125121, 124syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
126 1mod 13623 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1272, 125, 1263syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
1281273ad2ant2 1133 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (1 mod 𝑃) = 1)
129128ad2antrr 723 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (1 mod 𝑃) = 1)
13011, 120, 1293eqtrd 2782 . . 3 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
131130rexlimdva2 3216 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
1325, 131mpd 15 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  {cpr 4563   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  7c7 12033  8c8 12034  0cn0 12233  cz 12319  cuz 12582   mod cmo 13589  cexp 13782  cdvds 15963  cprime 16376   /L clgs 26442  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-gcd 16202  df-prm 16377  df-odz 16466  df-phi 16467  df-pc 16538  df-lgs 26443  df-fmtno 44980
This theorem is referenced by:  fmtnoprmfac2  45019
  Copyright terms: Public domain W3C validator