Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2lem1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2lem1 44906
Description: Lemma for fmtnoprmfac2 44907. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2lem1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)

Proof of Theorem fmtnoprmfac2lem1
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12553 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eldifi 4057 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3 id 22 . . 3 (𝑃 ∥ (FermatNo‘𝑁) → 𝑃 ∥ (FermatNo‘𝑁))
4 fmtnoprmfac1 44905 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
51, 2, 3, 4syl3an 1158 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
6 2z 12282 . . . . . 6 2 ∈ ℤ
7 simp2 1135 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ (ℙ ∖ {2}))
8 lgsvalmod 26369 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
98eqcomd 2744 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
106, 7, 9sylancr 586 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
1110ad2antrr 722 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
12 nncn 11911 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
14 2nn 11976 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
16 eluzge2nn0 12556 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
17 peano2nn0 12203 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
1915, 18nnexpcld 13888 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
2019nncnd 11919 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
2120adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
2213, 21mulcomd 10927 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = ((2↑(𝑁 + 1)) · 𝑛))
23 8cn 12000 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
2423a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ∈ ℂ)
25 0re 10908 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
26 8pos 12015 . . . . . . . . . . . . . . . . 17 0 < 8
2725, 26gtneii 11017 . . . . . . . . . . . . . . . 16 8 ≠ 0
2827a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ≠ 0)
2921, 24, 28divcan2d 11683 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (8 · ((2↑(𝑁 + 1)) / 8)) = (2↑(𝑁 + 1)))
3029eqcomd 2744 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) = (8 · ((2↑(𝑁 + 1)) / 8)))
3130oveq1d 7270 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) · 𝑛) = ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛))
3223a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℂ)
3327a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ≠ 0)
3420, 32, 33divcld 11681 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3534adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3624, 35, 13mulassd 10929 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3722, 31, 363eqtrd 2782 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3837oveq1d 7270 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (2↑(𝑁 + 1))) + 1) = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1))
3938eqeq2d 2749 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) ↔ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)))
40 oveq1 7262 . . . . . . . . . . . 12 (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
4140adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
42 3m1e2 12031 . . . . . . . . . . . . . . . . . . . . . . 23 (3 − 1) = 2
43 eluzle 12524 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
4442, 43eqbrtrid 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (3 − 1) ≤ 𝑁)
45 3re 11983 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
47 1red 10907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
48 eluzelre 12522 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
4946, 47, 48lesubaddd 11502 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → ((3 − 1) ≤ 𝑁 ↔ 3 ≤ (𝑁 + 1)))
5044, 49mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ≤ (𝑁 + 1))
51 3nn0 12181 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
52 nn0sub 12213 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5351, 18, 52sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5450, 53mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) − 3) ∈ ℕ0)
5515, 54nnexpcld 13888 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℕ)
5655nnzd 12354 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℤ)
57 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (2↑((𝑁 + 1) − 3)) → (8 · 𝑘) = (8 · (2↑((𝑁 + 1) − 3))))
5857eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (2↑((𝑁 + 1) − 3)) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
5958adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = (2↑((𝑁 + 1) − 3))) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
60 cu2 13845 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) = 8
6160eqcomi 2747 . . . . . . . . . . . . . . . . . . . . 21 8 = (2↑3)
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 8 = (2↑3))
63 2cnne0 12113 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 ≠ 0)
6463a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
65 eluzelz 12521 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6665peano2zd 12358 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℤ)
67 3z 12283 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℤ)
69 expsub 13759 . . . . . . . . . . . . . . . . . . . . 21 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ 3 ∈ ℤ)) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7064, 66, 68, 69syl12anc 833 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7162, 70oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))))
72 nnexpcl 13723 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℕ ∧ 3 ∈ ℕ0) → (2↑3) ∈ ℕ)
7314, 51, 72mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ∈ ℕ
7473nncni 11913 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ∈ ℂ
7574a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ∈ ℂ)
76 2cn 11978 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
77 2ne0 12007 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
78 expne0i 13743 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ) → (2↑3) ≠ 0)
7976, 77, 67, 78mp3an 1459 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ≠ 0)
8120, 75, 80divcan2d 11683 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))) = (2↑(𝑁 + 1)))
8271, 81eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1)))
8356, 59, 82rspcedvd 3555 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)))
84 8nn 11998 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
85 2nn0 12180 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
8786, 18nn0expcld 13889 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
8887nn0zd 12353 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℤ)
89 zdiv 12320 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℕ ∧ (2↑(𝑁 + 1)) ∈ ℤ) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9084, 88, 89sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9183, 90mpbid 231 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
93 nnz 12272 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9493adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
9592, 94zmulcld 12361 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ)
9684nnzi 12274 . . . . . . . . . . . . . . 15 8 ∈ ℤ
97 2re 11977 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
98 8re 11999 . . . . . . . . . . . . . . . 16 8 ∈ ℝ
99 2lt8 12100 . . . . . . . . . . . . . . . 16 2 < 8
10097, 98, 99ltleii 11028 . . . . . . . . . . . . . . 15 2 ≤ 8
101 eluz2 12517 . . . . . . . . . . . . . . 15 (8 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8))
1026, 96, 100, 101mpbir3an 1339 . . . . . . . . . . . . . 14 8 ∈ (ℤ‘2)
103 mulp1mod1 13560 . . . . . . . . . . . . . 14 (((((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ ∧ 8 ∈ (ℤ‘2)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
10495, 102, 103sylancl 585 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
105 1nn 11914 . . . . . . . . . . . . . 14 1 ∈ ℕ
106 prid1g 4693 . . . . . . . . . . . . . 14 (1 ∈ ℕ → 1 ∈ {1, 7})
107105, 106mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 1 ∈ {1, 7})
108104, 107eqeltrd 2839 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
109108adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
11041, 109eqeltrd 2839 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) ∈ {1, 7})
111110ex 412 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) ∈ {1, 7}))
11239, 111sylbid 239 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
1131123ad2antl1 1183 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
114113imp 406 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (𝑃 mod 8) ∈ {1, 7})
115 2lgs 26460 . . . . . . . . 9 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1162, 115syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1171163ad2ant2 1132 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
118117ad2antrr 722 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
119114, 118mpbird 256 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (2 /L 𝑃) = 1)
120119oveq1d 7270 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
121 prmuz2 16329 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
122 eluzelre 12522 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
123 eluz2gt1 12589 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
124122, 123jca 511 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
125121, 124syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
126 1mod 13551 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1272, 125, 1263syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
1281273ad2ant2 1132 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (1 mod 𝑃) = 1)
129128ad2antrr 722 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (1 mod 𝑃) = 1)
13011, 120, 1293eqtrd 2782 . . 3 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
131130rexlimdva2 3215 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
1325, 131mpd 15 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558  {cpr 4560   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  7c7 11963  8c8 11964  0cn0 12163  cz 12249  cuz 12511   mod cmo 13517  cexp 13710  cdvds 15891  cprime 16304   /L clgs 26347  FermatNocfmtno 44867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-gcd 16130  df-prm 16305  df-odz 16394  df-phi 16395  df-pc 16466  df-lgs 26348  df-fmtno 44868
This theorem is referenced by:  fmtnoprmfac2  44907
  Copyright terms: Public domain W3C validator