Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2lem1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2lem1 47571
Description: Lemma for fmtnoprmfac2 47572. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2lem1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)

Proof of Theorem fmtnoprmfac2lem1
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12854 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eldifi 4097 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3 id 22 . . 3 (𝑃 ∥ (FermatNo‘𝑁) → 𝑃 ∥ (FermatNo‘𝑁))
4 fmtnoprmfac1 47570 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
51, 2, 3, 4syl3an 1160 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
6 2z 12572 . . . . . 6 2 ∈ ℤ
7 simp2 1137 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ (ℙ ∖ {2}))
8 lgsvalmod 27234 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
98eqcomd 2736 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
106, 7, 9sylancr 587 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
1110ad2antrr 726 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
12 nncn 12201 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
14 2nn 12266 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
16 eluzge2nn0 12858 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
17 peano2nn0 12489 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
1915, 18nnexpcld 14217 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
2019nncnd 12209 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
2120adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
2213, 21mulcomd 11202 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = ((2↑(𝑁 + 1)) · 𝑛))
23 8cn 12290 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
2423a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ∈ ℂ)
25 0re 11183 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
26 8pos 12305 . . . . . . . . . . . . . . . . 17 0 < 8
2725, 26gtneii 11293 . . . . . . . . . . . . . . . 16 8 ≠ 0
2827a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ≠ 0)
2921, 24, 28divcan2d 11967 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (8 · ((2↑(𝑁 + 1)) / 8)) = (2↑(𝑁 + 1)))
3029eqcomd 2736 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) = (8 · ((2↑(𝑁 + 1)) / 8)))
3130oveq1d 7405 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) · 𝑛) = ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛))
3223a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℂ)
3327a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 8 ≠ 0)
3420, 32, 33divcld 11965 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3534adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3624, 35, 13mulassd 11204 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3722, 31, 363eqtrd 2769 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3837oveq1d 7405 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (2↑(𝑁 + 1))) + 1) = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1))
3938eqeq2d 2741 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) ↔ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)))
40 oveq1 7397 . . . . . . . . . . . 12 (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
4140adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
42 3m1e2 12316 . . . . . . . . . . . . . . . . . . . . . . 23 (3 − 1) = 2
43 eluzle 12813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
4442, 43eqbrtrid 5145 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (3 − 1) ≤ 𝑁)
45 3re 12273 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
47 1red 11182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
48 eluzelre 12811 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
4946, 47, 48lesubaddd 11782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → ((3 − 1) ≤ 𝑁 ↔ 3 ≤ (𝑁 + 1)))
5044, 49mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ≤ (𝑁 + 1))
51 3nn0 12467 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
52 nn0sub 12499 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5351, 18, 52sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5450, 53mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) − 3) ∈ ℕ0)
5515, 54nnexpcld 14217 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℕ)
5655nnzd 12563 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℤ)
57 oveq2 7398 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (2↑((𝑁 + 1) − 3)) → (8 · 𝑘) = (8 · (2↑((𝑁 + 1) − 3))))
5857eqeq1d 2732 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (2↑((𝑁 + 1) − 3)) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
5958adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = (2↑((𝑁 + 1) − 3))) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
60 cu2 14172 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) = 8
6160eqcomi 2739 . . . . . . . . . . . . . . . . . . . . 21 8 = (2↑3)
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 8 = (2↑3))
63 2cnne0 12398 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 ≠ 0)
6463a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
65 eluzelz 12810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6665peano2zd 12648 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℤ)
67 3z 12573 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℤ)
69 expsub 14082 . . . . . . . . . . . . . . . . . . . . 21 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ 3 ∈ ℤ)) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7064, 66, 68, 69syl12anc 836 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7162, 70oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))))
72 nnexpcl 14046 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℕ ∧ 3 ∈ ℕ0) → (2↑3) ∈ ℕ)
7314, 51, 72mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ∈ ℕ
7473nncni 12203 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ∈ ℂ
7574a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ∈ ℂ)
76 2cn 12268 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
77 2ne0 12297 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
78 expne0i 14066 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ) → (2↑3) ≠ 0)
7976, 77, 67, 78mp3an 1463 . . . . . . . . . . . . . . . . . . . . 21 (2↑3) ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑3) ≠ 0)
8120, 75, 80divcan2d 11967 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))) = (2↑(𝑁 + 1)))
8271, 81eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1)))
8356, 59, 82rspcedvd 3593 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)))
84 8nn 12288 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
85 2nn0 12466 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
8786, 18nn0expcld 14218 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
8887nn0zd 12562 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℤ)
89 zdiv 12611 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℕ ∧ (2↑(𝑁 + 1)) ∈ ℤ) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9084, 88, 89sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9183, 90mpbid 232 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
93 nnz 12557 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9493adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
9592, 94zmulcld 12651 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ)
9684nnzi 12564 . . . . . . . . . . . . . . 15 8 ∈ ℤ
97 2re 12267 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
98 8re 12289 . . . . . . . . . . . . . . . 16 8 ∈ ℝ
99 2lt8 12385 . . . . . . . . . . . . . . . 16 2 < 8
10097, 98, 99ltleii 11304 . . . . . . . . . . . . . . 15 2 ≤ 8
101 eluz2 12806 . . . . . . . . . . . . . . 15 (8 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8))
1026, 96, 100, 101mpbir3an 1342 . . . . . . . . . . . . . 14 8 ∈ (ℤ‘2)
103 mulp1mod1 13883 . . . . . . . . . . . . . 14 (((((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ ∧ 8 ∈ (ℤ‘2)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
10495, 102, 103sylancl 586 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
105 1nn 12204 . . . . . . . . . . . . . 14 1 ∈ ℕ
106 prid1g 4727 . . . . . . . . . . . . . 14 (1 ∈ ℕ → 1 ∈ {1, 7})
107105, 106mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 1 ∈ {1, 7})
108104, 107eqeltrd 2829 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
109108adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
11041, 109eqeltrd 2829 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) ∈ {1, 7})
111110ex 412 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) ∈ {1, 7}))
11239, 111sylbid 240 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
1131123ad2antl1 1186 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
114113imp 406 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (𝑃 mod 8) ∈ {1, 7})
115 2lgs 27325 . . . . . . . . 9 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1162, 115syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1171163ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
118117ad2antrr 726 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
119114, 118mpbird 257 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (2 /L 𝑃) = 1)
120119oveq1d 7405 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
121 prmuz2 16673 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
122 eluzelre 12811 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
123 eluz2gt1 12886 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
124122, 123jca 511 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
125 1mod 13872 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1262, 121, 124, 1254syl 19 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
1271263ad2ant2 1134 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (1 mod 𝑃) = 1)
128127ad2antrr 726 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (1 mod 𝑃) = 1)
12911, 120, 1283eqtrd 2769 . . 3 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
130129rexlimdva2 3137 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
1315, 130mpd 15 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  7c7 12253  8c8 12254  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  cexp 14033  cdvds 16229  cprime 16648   /L clgs 27212  FermatNocfmtno 47532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-pc 16815  df-lgs 27213  df-fmtno 47533
This theorem is referenced by:  fmtnoprmfac2  47572
  Copyright terms: Public domain W3C validator