Proof of Theorem ptpjpre2
Step | Hyp | Ref
| Expression |
1 | | ptbasfi.2 |
. . 3
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
2 | 1 | ptpjpre1 22630 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛))) |
3 | | ptbas.1 |
. . 3
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
4 | | simpll 763 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝐴 ∈ 𝑉) |
5 | | snfi 8788 |
. . . 4
⊢ {𝐼} ∈ Fin |
6 | 5 | a1i 11 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → {𝐼} ∈ Fin) |
7 | | simprr 769 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝑈 ∈ (𝐹‘𝐼)) |
8 | 7 | ad2antrr 722 |
. . . . 5
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹‘𝐼)) |
9 | | simpr 484 |
. . . . . 6
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼) |
10 | 9 | fveq2d 6760 |
. . . . 5
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → (𝐹‘𝑛) = (𝐹‘𝐼)) |
11 | 8, 10 | eleqtrrd 2842 |
. . . 4
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹‘𝑛)) |
12 | | simplr 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝐹:𝐴⟶Top) |
13 | 12 | ffvelrnda 6943 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ Top) |
14 | | eqid 2738 |
. . . . . . 7
⊢ ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑛) |
15 | 14 | topopn 21963 |
. . . . . 6
⊢ ((𝐹‘𝑛) ∈ Top → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
16 | 13, 15 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
17 | 16 | adantr 480 |
. . . 4
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝑛 = 𝐼) → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
18 | 11, 17 | ifclda 4491 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) ∈ (𝐹‘𝑛)) |
19 | | eldifsni 4720 |
. . . . . 6
⊢ (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛 ≠ 𝐼) |
20 | 19 | neneqd 2947 |
. . . . 5
⊢ (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼) |
21 | 20 | adantl 481 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼) |
22 | 21 | iffalsed 4467 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) = ∪ (𝐹‘𝑛)) |
23 | 3, 4, 6, 18, 22 | elptr2 22633 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → X𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) ∈ 𝐵) |
24 | 2, 23 | eqeltrd 2839 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) |