Proof of Theorem ptpjpre2
| Step | Hyp | Ref
| Expression |
| 1 | | ptbasfi.2 |
. . 3
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
| 2 | 1 | ptpjpre1 23524 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛))) |
| 3 | | ptbas.1 |
. . 3
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| 4 | | simpll 766 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝐴 ∈ 𝑉) |
| 5 | | snfi 9064 |
. . . 4
⊢ {𝐼} ∈ Fin |
| 6 | 5 | a1i 11 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → {𝐼} ∈ Fin) |
| 7 | | simprr 772 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝑈 ∈ (𝐹‘𝐼)) |
| 8 | 7 | ad2antrr 726 |
. . . . 5
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹‘𝐼)) |
| 9 | | simpr 484 |
. . . . . 6
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼) |
| 10 | 9 | fveq2d 6889 |
. . . . 5
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → (𝐹‘𝑛) = (𝐹‘𝐼)) |
| 11 | 8, 10 | eleqtrrd 2836 |
. . . 4
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹‘𝑛)) |
| 12 | | simplr 768 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → 𝐹:𝐴⟶Top) |
| 13 | 12 | ffvelcdmda 7083 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ Top) |
| 14 | | eqid 2734 |
. . . . . . 7
⊢ ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑛) |
| 15 | 14 | topopn 22859 |
. . . . . 6
⊢ ((𝐹‘𝑛) ∈ Top → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
| 16 | 13, 15 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
| 17 | 16 | adantr 480 |
. . . 4
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝑛 = 𝐼) → ∪ (𝐹‘𝑛) ∈ (𝐹‘𝑛)) |
| 18 | 11, 17 | ifclda 4541 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) ∈ (𝐹‘𝑛)) |
| 19 | | eldifsni 4770 |
. . . . . 6
⊢ (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛 ≠ 𝐼) |
| 20 | 19 | neneqd 2936 |
. . . . 5
⊢ (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼) |
| 22 | 21 | iffalsed 4516 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) = ∪ (𝐹‘𝑛)) |
| 23 | 3, 4, 6, 18, 22 | elptr2 23527 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → X𝑛 ∈ 𝐴 if(𝑛 = 𝐼, 𝑈, ∪ (𝐹‘𝑛)) ∈ 𝐵) |
| 24 | 2, 23 | eqeltrd 2833 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) |