MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre2 Structured version   Visualization version   GIF version

Theorem ptpjpre2 22931
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptpjpre2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑛   𝑤,𝑔,𝑥,𝑦,𝑛,𝐼   𝑧,𝑔,𝐴,𝑛,𝑤,𝑥,𝑦   𝑈,𝑔,𝑛,𝑤,𝑥,𝑦   𝑔,𝐹,𝑛,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑤,𝑥,𝑧   𝑔,𝑉,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑈(𝑧)   𝐼(𝑧)   𝑋(𝑦,𝑛)

Proof of Theorem ptpjpre2
StepHypRef Expression
1 ptbasfi.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
21ptpjpre1 22922 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)))
3 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
4 simpll 765 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐴𝑉)
5 snfi 8988 . . . 4 {𝐼} ∈ Fin
65a1i 11 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → {𝐼} ∈ Fin)
7 simprr 771 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 ∈ (𝐹𝐼))
87ad2antrr 724 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝐼))
9 simpr 485 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼)
109fveq2d 6846 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → (𝐹𝑛) = (𝐹𝐼))
118, 10eleqtrrd 2841 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝑛))
12 simplr 767 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐹:𝐴⟶Top)
1312ffvelcdmda 7035 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ Top)
14 eqid 2736 . . . . . . 7 (𝐹𝑛) = (𝐹𝑛)
1514topopn 22255 . . . . . 6 ((𝐹𝑛) ∈ Top → (𝐹𝑛) ∈ (𝐹𝑛))
1613, 15syl 17 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ (𝐹𝑛))
1716adantr 481 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ ¬ 𝑛 = 𝐼) → (𝐹𝑛) ∈ (𝐹𝑛))
1811, 17ifclda 4521 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ (𝐹𝑛))
19 eldifsni 4750 . . . . . 6 (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛𝐼)
2019neneqd 2948 . . . . 5 (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼)
2120adantl 482 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼)
2221iffalsed 4497 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) = (𝐹𝑛))
233, 4, 6, 18, 22elptr2 22925 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ 𝐵)
242, 23eqeltrd 2838 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  cdif 3907  ifcif 4486  {csn 4586   cuni 4865  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  Xcixp 8835  Fincfn 8883  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-ixp 8836  df-en 8884  df-fin 8887  df-top 22243
This theorem is referenced by:  ptbasfi  22932  ptpjcn  22962
  Copyright terms: Public domain W3C validator