MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre2 Structured version   Visualization version   GIF version

Theorem ptpjpre2 23611
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptpjpre2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑛   𝑤,𝑔,𝑥,𝑦,𝑛,𝐼   𝑧,𝑔,𝐴,𝑛,𝑤,𝑥,𝑦   𝑈,𝑔,𝑛,𝑤,𝑥,𝑦   𝑔,𝐹,𝑛,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑤,𝑥,𝑧   𝑔,𝑉,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑈(𝑧)   𝐼(𝑧)   𝑋(𝑦,𝑛)

Proof of Theorem ptpjpre2
StepHypRef Expression
1 ptbasfi.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
21ptpjpre1 23602 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)))
3 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
4 simpll 766 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐴𝑉)
5 snfi 9111 . . . 4 {𝐼} ∈ Fin
65a1i 11 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → {𝐼} ∈ Fin)
7 simprr 772 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 ∈ (𝐹𝐼))
87ad2antrr 725 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝐼))
9 simpr 484 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼)
109fveq2d 6926 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → (𝐹𝑛) = (𝐹𝐼))
118, 10eleqtrrd 2847 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝑛))
12 simplr 768 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐹:𝐴⟶Top)
1312ffvelcdmda 7120 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ Top)
14 eqid 2740 . . . . . . 7 (𝐹𝑛) = (𝐹𝑛)
1514topopn 22935 . . . . . 6 ((𝐹𝑛) ∈ Top → (𝐹𝑛) ∈ (𝐹𝑛))
1613, 15syl 17 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ (𝐹𝑛))
1716adantr 480 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ ¬ 𝑛 = 𝐼) → (𝐹𝑛) ∈ (𝐹𝑛))
1811, 17ifclda 4583 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ (𝐹𝑛))
19 eldifsni 4815 . . . . . 6 (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛𝐼)
2019neneqd 2951 . . . . 5 (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼)
2120adantl 481 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼)
2221iffalsed 4559 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) = (𝐹𝑛))
233, 4, 6, 18, 22elptr2 23605 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ 𝐵)
242, 23eqeltrd 2844 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  cdif 3973  ifcif 4548  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6570  wf 6571  cfv 6575  Xcixp 8957  Fincfn 9005  Topctop 22922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-ixp 8958  df-en 9006  df-fin 9009  df-top 22923
This theorem is referenced by:  ptbasfi  23612  ptpjcn  23642
  Copyright terms: Public domain W3C validator