Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsat Structured version   Visualization version   GIF version

Theorem lbslsat 33619
Description: A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 38976 and for example lsatlspsn 38993. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lbslsat ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))

Proof of Theorem lbslsat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21020 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2 snssi 4775 . . . . 5 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
3 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2730 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
63, 4, 5lspcl 20889 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
71, 2, 6syl2an 596 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
8 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
98, 4lsslvec 21023 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
107, 9syldan 591 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑌 ∈ LVec)
11103adant3 1132 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
123, 5lspssid 20898 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
131, 2, 12syl2an 596 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
143, 5lspssv 20896 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
151, 2, 14syl2an 596 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
168, 3ressbas2 17215 . . . . 5 ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌))
1715, 16syl 17 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌))
1813, 17sseqtrd 3986 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (Base‘𝑌))
19183adant3 1132 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (Base‘𝑌))
201adantr 480 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
21 eqid 2730 . . . . . 6 (LSpan‘𝑌) = (LSpan‘𝑌)
228, 5, 21, 4lsslsp 20928 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
2320, 7, 13, 22syl3anc 1373 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
24233adant3 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
25173adant3 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = (Base‘𝑌))
2624, 25eqtrd 2765 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌))
27 difid 4342 . . . . . . . . . . . . 13 ({𝑋} ∖ {𝑋}) = ∅
2827fveq2i 6864 . . . . . . . . . . . 12 ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)
2928a1i 11 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅))
3029eleq2d 2815 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅)))
3130biimpa 476 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅))
32 lveclmod 21020 . . . . . . . . . . 11 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
33 eqid 2730 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
3433, 21lsp0 20922 . . . . . . . . . . 11 (𝑌 ∈ LMod → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3510, 32, 343syl 18 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3635adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3731, 36eleqtrd 2831 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g𝑌)})
38 elsni 4609 . . . . . . . 8 (𝑋 ∈ {(0g𝑌)} → 𝑋 = (0g𝑌))
3937, 38syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g𝑌))
40 lmodgrp 20780 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41 grpmnd 18879 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
4220, 40, 413syl 18 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ Mnd)
43 lbslsat.z . . . . . . . . . . 11 0 = (0g𝑊)
4443, 3, 50ellsp 33347 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋}))
451, 2, 44syl2an 596 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 ∈ (𝑁‘{𝑋}))
468, 3, 43ress0g 18696 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 = (0g𝑌))
4742, 45, 15, 46syl3anc 1373 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 = (0g𝑌))
4847adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 = (0g𝑌))
4939, 48eqtr4d 2768 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 )
5049ex 412 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 ))
5150necon3ad 2939 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
52513impia 1117 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
53 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
54 sneq 4602 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5554difeq2d 4092 . . . . . . . 8 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
5655fveq2d 6865 . . . . . . 7 (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
5753, 56eleq12d 2823 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
5857notbid 318 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
5958ralsng 4642 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
60593ad2ant2 1134 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6152, 60mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))
62 eqid 2730 . . . 4 (Base‘𝑌) = (Base‘𝑌)
63 eqid 2730 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
6462, 63, 21islbs2 21071 . . 3 (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))))
6564biimpar 477 . 2 ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌))
6611, 19, 26, 61, 65syl13anc 1374 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  0gc0g 17409  Mndcmnd 18668  Grpcgrp 18872  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LBasisclbs 20988  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lbs 20989  df-lvec 21017
This theorem is referenced by:  lsatdim  33620
  Copyright terms: Public domain W3C validator