Step | Hyp | Ref
| Expression |
1 | | lveclmod 21128 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
2 | | snssi 4833 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) |
3 | | lbslsat.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
4 | | eqid 2740 |
. . . . . 6
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
5 | | lbslsat.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑊) |
6 | 3, 4, 5 | lspcl 20997 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
7 | 1, 2, 6 | syl2an 595 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
8 | | lbslsat.y |
. . . . 5
⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) |
9 | 8, 4 | lsslvec 21131 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec) |
10 | 7, 9 | syldan 590 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → 𝑌 ∈ LVec) |
11 | 10 | 3adant3 1132 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec) |
12 | 3, 5 | lspssid 21006 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
13 | 1, 2, 12 | syl2an 595 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
14 | 3, 5 | lspssv 21004 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉) |
15 | 1, 2, 14 | syl2an 595 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉) |
16 | 8, 3 | ressbas2 17296 |
. . . . 5
⊢ ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌)) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌)) |
18 | 13, 17 | sseqtrd 4049 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → {𝑋} ⊆ (Base‘𝑌)) |
19 | 18 | 3adant3 1132 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ⊆ (Base‘𝑌)) |
20 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
21 | | eqid 2740 |
. . . . . 6
⊢
(LSpan‘𝑌) =
(LSpan‘𝑌) |
22 | 8, 5, 21, 4 | lsslsp 21036 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋})) |
23 | 20, 7, 13, 22 | syl3anc 1371 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋})) |
24 | 23 | 3adant3 1132 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) →
((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋})) |
25 | 17 | 3adant3 1132 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) = (Base‘𝑌)) |
26 | 24, 25 | eqtrd 2780 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) →
((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌)) |
27 | | difid 4398 |
. . . . . . . . . . . . 13
⊢ ({𝑋} ∖ {𝑋}) = ∅ |
28 | 27 | fveq2i 6923 |
. . . . . . . . . . . 12
⊢
((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅) |
29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)) |
30 | 29 | eleq2d 2830 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅))) |
31 | 30 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅)) |
32 | | lveclmod 21128 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ LVec → 𝑌 ∈ LMod) |
33 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(0g‘𝑌) = (0g‘𝑌) |
34 | 33, 21 | lsp0 21030 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ LMod →
((LSpan‘𝑌)‘∅) =
{(0g‘𝑌)}) |
35 | 10, 32, 34 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑌)‘∅) =
{(0g‘𝑌)}) |
36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) =
{(0g‘𝑌)}) |
37 | 31, 36 | eleqtrd 2846 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g‘𝑌)}) |
38 | | elsni 4665 |
. . . . . . . 8
⊢ (𝑋 ∈
{(0g‘𝑌)}
→ 𝑋 =
(0g‘𝑌)) |
39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g‘𝑌)) |
40 | | lmodgrp 20887 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
41 | | grpmnd 18980 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Mnd) |
42 | 20, 40, 41 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ Mnd) |
43 | | lbslsat.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑊) |
44 | 43, 3, 5 | 0ellsp 33362 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋})) |
45 | 1, 2, 44 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → 0 ∈ (𝑁‘{𝑋})) |
46 | 8, 3, 43 | ress0g 18800 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 =
(0g‘𝑌)) |
47 | 42, 45, 15, 46 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → 0 =
(0g‘𝑌)) |
48 | 47 | adantr 480 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 =
(0g‘𝑌)) |
49 | 39, 48 | eqtr4d 2783 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 ) |
50 | 49 | ex 412 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 )) |
51 | 50 | necon3ad 2959 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉) → (𝑋 ≠ 0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))) |
52 | 51 | 3impia 1117 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) |
53 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
54 | | sneq 4658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
55 | 54 | difeq2d 4149 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋})) |
56 | 55 | fveq2d 6924 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) |
57 | 53, 56 | eleq12d 2838 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))) |
58 | 57 | notbid 318 |
. . . . 5
⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))) |
59 | 58 | ralsng 4697 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))) |
60 | 59 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))) |
61 | 52, 60 | mpbird 257 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥}))) |
62 | | eqid 2740 |
. . . 4
⊢
(Base‘𝑌) =
(Base‘𝑌) |
63 | | eqid 2740 |
. . . 4
⊢
(LBasis‘𝑌) =
(LBasis‘𝑌) |
64 | 62, 63, 21 | islbs2 21179 |
. . 3
⊢ (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥}))))) |
65 | 64 | biimpar 477 |
. 2
⊢ ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌)) |
66 | 11, 19, 26, 61, 65 | syl13anc 1372 |
1
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ∈ (LBasis‘𝑌)) |