Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsat Structured version   Visualization version   GIF version

Theorem lbslsat 33629
Description: A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 38932 and for example lsatlspsn 38949. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lbslsat ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))

Proof of Theorem lbslsat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21128 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2 snssi 4833 . . . . 5 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
3 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2740 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
63, 4, 5lspcl 20997 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
71, 2, 6syl2an 595 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
8 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
98, 4lsslvec 21131 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
107, 9syldan 590 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑌 ∈ LVec)
11103adant3 1132 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
123, 5lspssid 21006 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
131, 2, 12syl2an 595 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
143, 5lspssv 21004 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
151, 2, 14syl2an 595 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
168, 3ressbas2 17296 . . . . 5 ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌))
1715, 16syl 17 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌))
1813, 17sseqtrd 4049 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (Base‘𝑌))
19183adant3 1132 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (Base‘𝑌))
201adantr 480 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
21 eqid 2740 . . . . . 6 (LSpan‘𝑌) = (LSpan‘𝑌)
228, 5, 21, 4lsslsp 21036 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
2320, 7, 13, 22syl3anc 1371 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
24233adant3 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (𝑁‘{𝑋}))
25173adant3 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = (Base‘𝑌))
2624, 25eqtrd 2780 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌))
27 difid 4398 . . . . . . . . . . . . 13 ({𝑋} ∖ {𝑋}) = ∅
2827fveq2i 6923 . . . . . . . . . . . 12 ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)
2928a1i 11 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅))
3029eleq2d 2830 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅)))
3130biimpa 476 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅))
32 lveclmod 21128 . . . . . . . . . . 11 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
33 eqid 2740 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
3433, 21lsp0 21030 . . . . . . . . . . 11 (𝑌 ∈ LMod → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3510, 32, 343syl 18 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3635adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3731, 36eleqtrd 2846 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g𝑌)})
38 elsni 4665 . . . . . . . 8 (𝑋 ∈ {(0g𝑌)} → 𝑋 = (0g𝑌))
3937, 38syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g𝑌))
40 lmodgrp 20887 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41 grpmnd 18980 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
4220, 40, 413syl 18 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ Mnd)
43 lbslsat.z . . . . . . . . . . 11 0 = (0g𝑊)
4443, 3, 50ellsp 33362 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋}))
451, 2, 44syl2an 595 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 ∈ (𝑁‘{𝑋}))
468, 3, 43ress0g 18800 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 = (0g𝑌))
4742, 45, 15, 46syl3anc 1371 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 = (0g𝑌))
4847adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 = (0g𝑌))
4939, 48eqtr4d 2783 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 )
5049ex 412 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 ))
5150necon3ad 2959 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
52513impia 1117 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
53 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
54 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5554difeq2d 4149 . . . . . . . 8 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
5655fveq2d 6924 . . . . . . 7 (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
5753, 56eleq12d 2838 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
5857notbid 318 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
5958ralsng 4697 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
60593ad2ant2 1134 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6152, 60mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))
62 eqid 2740 . . . 4 (Base‘𝑌) = (Base‘𝑌)
63 eqid 2740 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
6462, 63, 21islbs2 21179 . . 3 (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))))
6564biimpar 477 . 2 ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌))
6611, 19, 26, 61, 65syl13anc 1372 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  0gc0g 17499  Mndcmnd 18772  Grpcgrp 18973  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LBasisclbs 21096  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lbs 21097  df-lvec 21125
This theorem is referenced by:  lsatdim  33630
  Copyright terms: Public domain W3C validator