Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsat Structured version   Visualization version   GIF version

Theorem lbslsat 31102
Description: A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 36272 and for example lsatlspsn 36289. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lbslsat ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))

Proof of Theorem lbslsat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19871 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
21adantr 484 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
3 snssi 4701 . . . . . 6 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
43adantl 485 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ 𝑉)
5 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
6 eqid 2798 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
85, 6, 7lspcl 19741 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
92, 4, 8syl2anc 587 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
1110, 6lsslvec 19872 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
129, 11syldan 594 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑌 ∈ LVec)
13123adant3 1129 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
145, 7lspssid 19750 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
152, 4, 14syl2anc 587 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
165, 7lspssv 19748 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
172, 4, 16syl2anc 587 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
1810, 5ressbas2 16547 . . . . 5 ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌))
1917, 18syl 17 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌))
2015, 19sseqtrd 3955 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (Base‘𝑌))
21203adant3 1129 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (Base‘𝑌))
2223adant3 1129 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod)
2393adant3 1129 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
24153adant3 1129 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (𝑁‘{𝑋}))
25 eqid 2798 . . . . 5 (LSpan‘𝑌) = (LSpan‘𝑌)
2610, 7, 25, 6lsslsp 19780 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
2722, 23, 24, 26syl3anc 1368 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
28193adant3 1129 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = (Base‘𝑌))
2927, 28eqtr3d 2835 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌))
30 difid 4284 . . . . . . . . . . . . 13 ({𝑋} ∖ {𝑋}) = ∅
3130fveq2i 6648 . . . . . . . . . . . 12 ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)
3231a1i 11 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅))
3332eleq2d 2875 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅)))
3433biimpa 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅))
35 lveclmod 19871 . . . . . . . . . . 11 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
36 eqid 2798 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
3736, 25lsp0 19774 . . . . . . . . . . 11 (𝑌 ∈ LMod → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3812, 35, 373syl 18 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3938adantr 484 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
4034, 39eleqtrd 2892 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g𝑌)})
41 elsni 4542 . . . . . . . 8 (𝑋 ∈ {(0g𝑌)} → 𝑋 = (0g𝑌))
4240, 41syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g𝑌))
43 lmodgrp 19634 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
44 grpmnd 18102 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
452, 43, 443syl 18 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ Mnd)
46 lbslsat.z . . . . . . . . . . 11 0 = (0g𝑊)
4746, 5, 70ellsp 30985 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋}))
482, 4, 47syl2anc 587 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 ∈ (𝑁‘{𝑋}))
4910, 5, 46ress0g 17931 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 = (0g𝑌))
5045, 48, 17, 49syl3anc 1368 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 = (0g𝑌))
5150adantr 484 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 = (0g𝑌))
5242, 51eqtr4d 2836 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 )
5352ex 416 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 ))
5453necon3ad 3000 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
55543impia 1114 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
56 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
57 sneq 4535 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5857difeq2d 4050 . . . . . . . 8 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
5958fveq2d 6649 . . . . . . 7 (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
6056, 59eleq12d 2884 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6160notbid 321 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6261ralsng 4573 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
63623ad2ant2 1131 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6455, 63mpbird 260 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))
65 eqid 2798 . . . 4 (Base‘𝑌) = (Base‘𝑌)
66 eqid 2798 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
6765, 66, 25islbs2 19919 . . 3 (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))))
6867biimpar 481 . 2 ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌))
6913, 21, 29, 64, 68syl13anc 1369 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  c0 4243  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LBasisclbs 19839  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lbs 19840  df-lvec 19868
This theorem is referenced by:  lsatdim  31103
  Copyright terms: Public domain W3C validator