Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsat Structured version   Visualization version   GIF version

Theorem lbslsat 31444
Description: A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 36763 and for example lsatlspsn 36780. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lbslsat ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))

Proof of Theorem lbslsat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 20175 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
21adantr 484 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
3 snssi 4737 . . . . . 6 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
43adantl 485 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ 𝑉)
5 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
6 eqid 2739 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
85, 6, 7lspcl 20045 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
92, 4, 8syl2anc 587 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
1110, 6lsslvec 20176 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
129, 11syldan 594 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑌 ∈ LVec)
13123adant3 1134 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
145, 7lspssid 20054 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
152, 4, 14syl2anc 587 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
165, 7lspssv 20052 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
172, 4, 16syl2anc 587 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
1810, 5ressbas2 16823 . . . . 5 ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌))
1917, 18syl 17 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌))
2015, 19sseqtrd 3957 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (Base‘𝑌))
21203adant3 1134 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (Base‘𝑌))
2223adant3 1134 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod)
2393adant3 1134 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
24153adant3 1134 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (𝑁‘{𝑋}))
25 eqid 2739 . . . . 5 (LSpan‘𝑌) = (LSpan‘𝑌)
2610, 7, 25, 6lsslsp 20084 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
2722, 23, 24, 26syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
28193adant3 1134 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = (Base‘𝑌))
2927, 28eqtr3d 2781 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌))
30 difid 4301 . . . . . . . . . . . . 13 ({𝑋} ∖ {𝑋}) = ∅
3130fveq2i 6741 . . . . . . . . . . . 12 ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)
3231a1i 11 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅))
3332eleq2d 2825 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅)))
3433biimpa 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅))
35 lveclmod 20175 . . . . . . . . . . 11 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
36 eqid 2739 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
3736, 25lsp0 20078 . . . . . . . . . . 11 (𝑌 ∈ LMod → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3812, 35, 373syl 18 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3938adantr 484 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
4034, 39eleqtrd 2842 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g𝑌)})
41 elsni 4574 . . . . . . . 8 (𝑋 ∈ {(0g𝑌)} → 𝑋 = (0g𝑌))
4240, 41syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g𝑌))
43 lmodgrp 19938 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
44 grpmnd 18404 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
452, 43, 443syl 18 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ Mnd)
46 lbslsat.z . . . . . . . . . . 11 0 = (0g𝑊)
4746, 5, 70ellsp 31310 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋}))
482, 4, 47syl2anc 587 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 ∈ (𝑁‘{𝑋}))
4910, 5, 46ress0g 18233 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 = (0g𝑌))
5045, 48, 17, 49syl3anc 1373 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 = (0g𝑌))
5150adantr 484 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 = (0g𝑌))
5242, 51eqtr4d 2782 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 )
5352ex 416 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 ))
5453necon3ad 2956 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
55543impia 1119 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
56 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
57 sneq 4567 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5857difeq2d 4053 . . . . . . . 8 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
5958fveq2d 6742 . . . . . . 7 (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
6056, 59eleq12d 2834 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6160notbid 321 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6261ralsng 4605 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
63623ad2ant2 1136 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6455, 63mpbird 260 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))
65 eqid 2739 . . . 4 (Base‘𝑌) = (Base‘𝑌)
66 eqid 2739 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
6765, 66, 25islbs2 20223 . . 3 (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))))
6867biimpar 481 . 2 ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌))
6913, 21, 29, 64, 68syl13anc 1374 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2943  wral 3064  cdif 3880  wss 3883  c0 4253  {csn 4557  cfv 6400  (class class class)co 7234  Basecbs 16792  s cress 16816  0gc0g 16976  Mndcmnd 18205  Grpcgrp 18397  LModclmod 19931  LSubSpclss 20000  LSpanclspn 20040  LBasisclbs 20143  LVecclvec 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-tpos 7991  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-nn 11860  df-2 11922  df-3 11923  df-4 11924  df-5 11925  df-6 11926  df-sets 16749  df-slot 16767  df-ndx 16777  df-base 16793  df-ress 16817  df-plusg 16847  df-mulr 16848  df-sca 16850  df-vsca 16851  df-0g 16978  df-mgm 18146  df-sgrp 18195  df-mnd 18206  df-grp 18400  df-minusg 18401  df-sbg 18402  df-subg 18572  df-mgp 19537  df-ur 19549  df-ring 19596  df-oppr 19673  df-dvdsr 19691  df-unit 19692  df-invr 19722  df-drng 19801  df-lmod 19933  df-lss 20001  df-lsp 20041  df-lbs 20144  df-lvec 20172
This theorem is referenced by:  lsatdim  31445
  Copyright terms: Public domain W3C validator