| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfgtlem | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfgtlem.x | ⊢ Ⅎ𝑥𝜑 |
| issmfgtlem.a | ⊢ Ⅎ𝑎𝜑 |
| issmfgtlem.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfgtlem.d | ⊢ 𝐷 = dom 𝐹 |
| issmfgtlem.i | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmfgtlem.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmfgtlem.p | ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmfgtlem | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmfgtlem.i | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 2 | issmfgtlem.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 3 | issmfgtlem.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | 3, 1 | restuni4 45122 | . . . . . . . 8 ⊢ (𝜑 → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 5 | 4 | eqcomd 2736 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
| 6 | 5 | rabeqdv 3424 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 8 | issmfgtlem.x | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 9 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
| 10 | 8, 9 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
| 11 | issmfgtlem.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
| 12 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
| 13 | 11, 12 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
| 14 | 3 | uniexd 7721 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆 ∈ V) |
| 16 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) | |
| 17 | 15, 16 | ssexd 5282 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
| 18 | 1, 17 | mpdan 687 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 19 | eqid 2730 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 20 | 3, 18, 19 | subsalsal 46364 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 22 | eqid 2730 | . . . . . 6 ⊢ ∪ (𝑆 ↾t 𝐷) = ∪ (𝑆 ↾t 𝐷) | |
| 23 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝐹:𝐷⟶ℝ) |
| 24 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) | |
| 25 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 26 | 24, 25 | eleqtrd 2831 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ 𝐷) |
| 27 | 23, 26 | ffvelcdmd 7060 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ) |
| 28 | 27 | rexrd 11231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 29 | 28 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 30 | 4 | rabeqdv 3424 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 31 | 30 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 32 | issmfgtlem.p | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | |
| 33 | 32 | r19.21bi 3230 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 34 | 31, 33 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 35 | 34 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
| 37 | 10, 13, 21, 22, 29, 35, 36 | salpreimagtlt 46735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 38 | 7, 37 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 39 | 38 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 40 | 1, 2, 39 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷))) |
| 41 | issmfgtlem.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 42 | 3, 41 | issmf 46733 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
| 43 | 40, 42 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ↾t crest 17390 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ico 13319 df-fl 13761 df-rest 17392 df-salg 46314 df-smblfn 46701 |
| This theorem is referenced by: issmfgt 46761 |
| Copyright terms: Public domain | W3C validator |