| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfgtlem | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfgtlem.x | ⊢ Ⅎ𝑥𝜑 |
| issmfgtlem.a | ⊢ Ⅎ𝑎𝜑 |
| issmfgtlem.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfgtlem.d | ⊢ 𝐷 = dom 𝐹 |
| issmfgtlem.i | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmfgtlem.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmfgtlem.p | ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmfgtlem | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmfgtlem.i | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 2 | issmfgtlem.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 3 | issmfgtlem.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | 3, 1 | restuni4 45098 | . . . . . . . 8 ⊢ (𝜑 → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 5 | 4 | eqcomd 2740 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
| 6 | 5 | rabeqdv 3435 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 8 | issmfgtlem.x | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 9 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
| 10 | 8, 9 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
| 11 | issmfgtlem.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
| 12 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
| 13 | 11, 12 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
| 14 | 3 | uniexd 7744 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆 ∈ V) |
| 16 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) | |
| 17 | 15, 16 | ssexd 5304 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
| 18 | 1, 17 | mpdan 687 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 19 | eqid 2734 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 20 | 3, 18, 19 | subsalsal 46346 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 22 | eqid 2734 | . . . . . 6 ⊢ ∪ (𝑆 ↾t 𝐷) = ∪ (𝑆 ↾t 𝐷) | |
| 23 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝐹:𝐷⟶ℝ) |
| 24 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) | |
| 25 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 26 | 24, 25 | eleqtrd 2835 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ 𝐷) |
| 27 | 23, 26 | ffvelcdmd 7085 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ) |
| 28 | 27 | rexrd 11293 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 29 | 28 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 30 | 4 | rabeqdv 3435 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 31 | 30 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 32 | issmfgtlem.p | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | |
| 33 | 32 | r19.21bi 3237 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 34 | 31, 33 | eqeltrd 2833 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 35 | 34 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
| 37 | 10, 13, 21, 22, 29, 35, 36 | salpreimagtlt 46717 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 38 | 7, 37 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 39 | 38 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 40 | 1, 2, 39 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷))) |
| 41 | issmfgtlem.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 42 | 3, 41 | issmf 46715 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
| 43 | 40, 42 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3050 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∪ cuni 4887 class class class wbr 5123 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 ℝ*cxr 11276 < clt 11277 ↾t crest 17437 SAlgcsalg 46295 SMblFncsmblfn 46682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-ioo 13373 df-ico 13375 df-fl 13814 df-rest 17439 df-salg 46296 df-smblfn 46683 |
| This theorem is referenced by: issmfgt 46743 |
| Copyright terms: Public domain | W3C validator |