Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgtlem Structured version   Visualization version   GIF version

Theorem issmfgtlem 46792
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgtlem.x 𝑥𝜑
issmfgtlem.a 𝑎𝜑
issmfgtlem.s (𝜑𝑆 ∈ SAlg)
issmfgtlem.d 𝐷 = dom 𝐹
issmfgtlem.i (𝜑𝐷 𝑆)
issmfgtlem.f (𝜑𝐹:𝐷⟶ℝ)
issmfgtlem.p (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgtlem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmfgtlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmfgtlem.i . . 3 (𝜑𝐷 𝑆)
2 issmfgtlem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmfgtlem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
43, 1restuni4 45157 . . . . . . . 8 (𝜑 (𝑆t 𝐷) = 𝐷)
54eqcomd 2737 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
65rabeqdv 3410 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
76adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
8 issmfgtlem.x . . . . . . 7 𝑥𝜑
9 nfv 1915 . . . . . . 7 𝑥 𝑏 ∈ ℝ
108, 9nfan 1900 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
11 issmfgtlem.a . . . . . . 7 𝑎𝜑
12 nfv 1915 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1311, 12nfan 1900 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
143uniexd 7675 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1514adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
16 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1715, 16ssexd 5262 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
181, 17mpdan 687 . . . . . . . 8 (𝜑𝐷 ∈ V)
19 eqid 2731 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
203, 18, 19subsalsal 46396 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2120adantr 480 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
22 eqid 2731 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
232adantr 480 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
24 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
254adantr 480 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2624, 25eleqtrd 2833 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
2723, 26ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
2827rexrd 11159 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
2928adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
304rabeqdv 3410 . . . . . . . . 9 (𝜑 → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
3130adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
32 issmfgtlem.p . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3332r19.21bi 3224 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3431, 33eqeltrd 2831 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3534adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
36 simpr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3710, 13, 21, 22, 29, 35, 36salpreimagtlt 46767 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
387, 37eqeltrd 2831 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
3938ralrimiva 3124 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
401, 2, 393jca 1128 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
41 issmfgtlem.d . . 3 𝐷 = dom 𝐹
423, 41issmf 46765 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4340, 42mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3902   cuni 4859   class class class wbr 5091  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11002  *cxr 11142   < clt 11143  t crest 17321  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-fl 13693  df-rest 17323  df-salg 46346  df-smblfn 46733
This theorem is referenced by:  issmfgt  46793
  Copyright terms: Public domain W3C validator