Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgtlem Structured version   Visualization version   GIF version

Theorem issmfgtlem 43052
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgtlem.x 𝑥𝜑
issmfgtlem.a 𝑎𝜑
issmfgtlem.s (𝜑𝑆 ∈ SAlg)
issmfgtlem.d 𝐷 = dom 𝐹
issmfgtlem.i (𝜑𝐷 𝑆)
issmfgtlem.f (𝜑𝐹:𝐷⟶ℝ)
issmfgtlem.p (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgtlem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmfgtlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmfgtlem.i . . 3 (𝜑𝐷 𝑆)
2 issmfgtlem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmfgtlem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
43, 1restuni4 41407 . . . . . . . 8 (𝜑 (𝑆t 𝐷) = 𝐷)
54eqcomd 2827 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
65rabeqdv 3484 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
76adantr 483 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
8 issmfgtlem.x . . . . . . 7 𝑥𝜑
9 nfv 1915 . . . . . . 7 𝑥 𝑏 ∈ ℝ
108, 9nfan 1900 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
11 issmfgtlem.a . . . . . . 7 𝑎𝜑
12 nfv 1915 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1311, 12nfan 1900 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
143uniexd 7468 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1514adantr 483 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
16 simpr 487 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1715, 16ssexd 5228 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
181, 17mpdan 685 . . . . . . . 8 (𝜑𝐷 ∈ V)
19 eqid 2821 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
203, 18, 19subsalsal 42662 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2120adantr 483 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
22 eqid 2821 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
232adantr 483 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
24 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
254adantr 483 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2624, 25eleqtrd 2915 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
2723, 26ffvelrnd 6852 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
2827rexrd 10691 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
2928adantlr 713 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
304rabeqdv 3484 . . . . . . . . 9 (𝜑 → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
3130adantr 483 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
32 issmfgtlem.p . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3332r19.21bi 3208 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3431, 33eqeltrd 2913 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
3534adantlr 713 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ 𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
36 simpr 487 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3710, 13, 21, 22, 29, 35, 36salpreimagtlt 43027 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
387, 37eqeltrd 2913 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
3938ralrimiva 3182 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
401, 2, 393jca 1124 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
41 issmfgtlem.d . . 3 𝐷 = dom 𝐹
423, 41issmf 43025 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4340, 42mpbird 259 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  wss 3936   cuni 4838   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  *cxr 10674   < clt 10675  t crest 16694  SAlgcsalg 42613  SMblFncsmblfn 42997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fl 13163  df-rest 16696  df-salg 42614  df-smblfn 42998
This theorem is referenced by:  issmfgt  43053
  Copyright terms: Public domain W3C validator