Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflelem Structured version   Visualization version   GIF version

Theorem issmflelem 46742
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflelem.x 𝑥𝜑
issmflelem.a 𝑎𝜑
issmflelem.s (𝜑𝑆 ∈ SAlg)
issmflelem.d 𝐷 = dom 𝐹
issmflelem.i (𝜑𝐷 𝑆)
issmflelem.f (𝜑𝐹:𝐷⟶ℝ)
issmflelem.l ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmflelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmflelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmflelem.i . . 3 (𝜑𝐷 𝑆)
2 issmflelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmflelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
43adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ SAlg)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
64, 5restuni4 45115 . . . . . . . . 9 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) = 𝐷)
76eqcomd 2735 . . . . . . . 8 ((𝜑𝐷 𝑆) → 𝐷 = (𝑆t 𝐷))
81, 7mpdan 687 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
98rabeqdv 3421 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
109adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
11 issmflelem.x . . . . . . 7 𝑥𝜑
12 nfv 1914 . . . . . . 7 𝑥 𝑏 ∈ ℝ
1311, 12nfan 1899 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
14 issmflelem.a . . . . . . 7 𝑎𝜑
15 nfv 1914 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1614, 15nfan 1899 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
173uniexd 7718 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
1918, 5ssexd 5279 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
20 eqid 2729 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
214, 19, 20subsalsal 46357 . . . . . . . 8 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) ∈ SAlg)
221, 21mpdan 687 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
24 eqid 2729 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
261, 6mpdan 687 . . . . . . . . . . 11 (𝜑 (𝑆t 𝐷) = 𝐷)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2825, 27eleqtrd 2830 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
292ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
3028, 29syldan 591 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
3130rexrd 11224 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3231adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3326rabeqdv 3421 . . . . . . . . 9 (𝜑 → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
3433adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
35 issmflelem.l . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3634, 35eqeltrd 2828 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3736adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
38 simpr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3913, 16, 23, 24, 32, 37, 38salpreimalelt 46727 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4010, 39eqeltrd 2828 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4140ralrimiva 3125 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
421, 2, 413jca 1128 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
43 issmflelem.d . . 3 𝐷 = dom 𝐹
443, 43issmf 46726 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4542, 44mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914   cuni 4871   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  *cxr 11207   < clt 11208  cle 11209  t crest 17383  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fl 13754  df-rest 17385  df-salg 46307  df-smblfn 46694
This theorem is referenced by:  issmfle  46743
  Copyright terms: Public domain W3C validator