Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflelem Structured version   Visualization version   GIF version

Theorem issmflelem 46788
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflelem.x 𝑥𝜑
issmflelem.a 𝑎𝜑
issmflelem.s (𝜑𝑆 ∈ SAlg)
issmflelem.d 𝐷 = dom 𝐹
issmflelem.i (𝜑𝐷 𝑆)
issmflelem.f (𝜑𝐹:𝐷⟶ℝ)
issmflelem.l ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmflelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmflelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmflelem.i . . 3 (𝜑𝐷 𝑆)
2 issmflelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmflelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
43adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ SAlg)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
64, 5restuni4 45164 . . . . . . . . 9 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) = 𝐷)
76eqcomd 2737 . . . . . . . 8 ((𝜑𝐷 𝑆) → 𝐷 = (𝑆t 𝐷))
81, 7mpdan 687 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
98rabeqdv 3410 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
109adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
11 issmflelem.x . . . . . . 7 𝑥𝜑
12 nfv 1915 . . . . . . 7 𝑥 𝑏 ∈ ℝ
1311, 12nfan 1900 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
14 issmflelem.a . . . . . . 7 𝑎𝜑
15 nfv 1915 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1614, 15nfan 1900 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
173uniexd 7675 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
1918, 5ssexd 5262 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
20 eqid 2731 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
214, 19, 20subsalsal 46403 . . . . . . . 8 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) ∈ SAlg)
221, 21mpdan 687 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
24 eqid 2731 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
261, 6mpdan 687 . . . . . . . . . . 11 (𝜑 (𝑆t 𝐷) = 𝐷)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2825, 27eleqtrd 2833 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
292ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
3028, 29syldan 591 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
3130rexrd 11162 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3231adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3326rabeqdv 3410 . . . . . . . . 9 (𝜑 → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
3433adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
35 issmflelem.l . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3634, 35eqeltrd 2831 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3736adantlr 715 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
38 simpr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3913, 16, 23, 24, 32, 37, 38salpreimalelt 46773 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4010, 39eqeltrd 2831 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4140ralrimiva 3124 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
421, 2, 413jca 1128 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
43 issmflelem.d . . 3 𝐷 = dom 𝐹
443, 43issmf 46772 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4542, 44mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3902   cuni 4859   class class class wbr 5091  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  *cxr 11145   < clt 11146  cle 11147  t crest 17324  SAlgcsalg 46352  SMblFncsmblfn 46739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-fl 13696  df-rest 17326  df-salg 46353  df-smblfn 46740
This theorem is referenced by:  issmfle  46789
  Copyright terms: Public domain W3C validator