![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmflelem | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmflelem.x | ⊢ Ⅎ𝑥𝜑 |
issmflelem.a | ⊢ Ⅎ𝑎𝜑 |
issmflelem.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmflelem.d | ⊢ 𝐷 = dom 𝐹 |
issmflelem.i | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmflelem.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmflelem.l | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmflelem | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmflelem.i | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
2 | issmflelem.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
3 | issmflelem.s | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝑆 ∈ SAlg) |
5 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) | |
6 | 4, 5 | restuni4 44478 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
7 | 6 | eqcomd 2734 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
8 | 1, 7 | mpdan 686 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
9 | 8 | rabeqdv 3443 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
11 | issmflelem.x | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
12 | nfv 1910 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
13 | 11, 12 | nfan 1895 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
14 | issmflelem.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
15 | nfv 1910 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
16 | 14, 15 | nfan 1895 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
17 | 3 | uniexd 7742 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
18 | 17 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆 ∈ V) |
19 | 18, 5 | ssexd 5319 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
20 | eqid 2728 | . . . . . . . . 9 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
21 | 4, 19, 20 | subsalsal 45738 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → (𝑆 ↾t 𝐷) ∈ SAlg) |
22 | 1, 21 | mpdan 686 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
24 | eqid 2728 | . . . . . 6 ⊢ ∪ (𝑆 ↾t 𝐷) = ∪ (𝑆 ↾t 𝐷) | |
25 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) | |
26 | 1, 6 | mpdan 686 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
28 | 25, 27 | eleqtrd 2831 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ 𝐷) |
29 | 2 | ffvelcdmda 7089 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
30 | 28, 29 | syldan 590 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ) |
31 | 30 | rexrd 11289 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
32 | 31 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
33 | 26 | rabeqdv 3443 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
35 | issmflelem.l | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
36 | 34, 35 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
37 | 36 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
38 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
39 | 13, 16, 23, 24, 32, 37, 38 | salpreimalelt 46108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
40 | 10, 39 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
41 | 40 | ralrimiva 3142 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
42 | 1, 2, 41 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷))) |
43 | issmflelem.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
44 | 3, 43 | issmf 46107 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
45 | 42, 44 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3057 {crab 3428 Vcvv 3470 ⊆ wss 3945 ∪ cuni 4904 class class class wbr 5143 dom cdm 5673 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ℝcr 11132 ℝ*cxr 11272 < clt 11273 ≤ cle 11274 ↾t crest 17396 SAlgcsalg 45687 SMblFncsmblfn 46074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cc 10453 ax-ac2 10481 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-card 9957 df-acn 9960 df-ac 10134 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-q 12958 df-rp 13002 df-ioo 13355 df-ico 13357 df-fl 13784 df-rest 17398 df-salg 45688 df-smblfn 46075 |
This theorem is referenced by: issmfle 46124 |
Copyright terms: Public domain | W3C validator |