| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmflelem | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmflelem.x | ⊢ Ⅎ𝑥𝜑 |
| issmflelem.a | ⊢ Ⅎ𝑎𝜑 |
| issmflelem.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmflelem.d | ⊢ 𝐷 = dom 𝐹 |
| issmflelem.i | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmflelem.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmflelem.l | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmflelem | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmflelem.i | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 2 | issmflelem.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 3 | issmflelem.s | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝑆 ∈ SAlg) |
| 5 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) | |
| 6 | 4, 5 | restuni4 45245 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 7 | 6 | eqcomd 2739 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
| 8 | 1, 7 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
| 9 | 8 | rabeqdv 3411 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} = {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏}) |
| 11 | issmflelem.x | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 12 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
| 13 | 11, 12 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
| 14 | issmflelem.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
| 15 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
| 16 | 14, 15 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
| 17 | 3 | uniexd 7683 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 18 | 17 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆 ∈ V) |
| 19 | 18, 5 | ssexd 5266 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
| 20 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 21 | 4, 19, 20 | subsalsal 46484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 22 | 1, 21 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 24 | eqid 2733 | . . . . . 6 ⊢ ∪ (𝑆 ↾t 𝐷) = ∪ (𝑆 ↾t 𝐷) | |
| 25 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) | |
| 26 | 1, 6 | mpdan 687 | . . . . . . . . . . 11 ⊢ (𝜑 → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → ∪ (𝑆 ↾t 𝐷) = 𝐷) |
| 28 | 25, 27 | eleqtrd 2835 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → 𝑥 ∈ 𝐷) |
| 29 | 2 | ffvelcdmda 7025 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 30 | 28, 29 | syldan 591 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ) |
| 31 | 30 | rexrd 11171 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 32 | 31 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ ∪ (𝑆 ↾t 𝐷)) → (𝐹‘𝑥) ∈ ℝ*) |
| 33 | 26 | rabeqdv 3411 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
| 34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
| 35 | issmflelem.l | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
| 36 | 34, 35 | eqeltrd 2833 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 37 | 36 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 38 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
| 39 | 13, 16, 23, 24, 32, 37, 38 | salpreimalelt 46854 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ ∪ (𝑆 ↾t 𝐷) ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 40 | 10, 39 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 41 | 40 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)) |
| 42 | 1, 2, 41 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷))) |
| 43 | issmflelem.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 44 | 3, 43 | issmf 46853 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
| 45 | 42, 44 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 ↾t crest 17328 SAlgcsalg 46433 SMblFncsmblfn 46820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cc 10335 ax-ac2 10363 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-card 9841 df-acn 9844 df-ac 10016 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-ioo 13253 df-ico 13255 df-fl 13700 df-rest 17330 df-salg 46434 df-smblfn 46821 |
| This theorem is referenced by: issmfle 46870 |
| Copyright terms: Public domain | W3C validator |