Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflelem Structured version   Visualization version   GIF version

Theorem issmflelem 44167
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflelem.x 𝑥𝜑
issmflelem.a 𝑎𝜑
issmflelem.s (𝜑𝑆 ∈ SAlg)
issmflelem.d 𝐷 = dom 𝐹
issmflelem.i (𝜑𝐷 𝑆)
issmflelem.f (𝜑𝐹:𝐷⟶ℝ)
issmflelem.l ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmflelem (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem issmflelem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 issmflelem.i . . 3 (𝜑𝐷 𝑆)
2 issmflelem.f . . 3 (𝜑𝐹:𝐷⟶ℝ)
3 issmflelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
43adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ SAlg)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
64, 5restuni4 42559 . . . . . . . . 9 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) = 𝐷)
76eqcomd 2744 . . . . . . . 8 ((𝜑𝐷 𝑆) → 𝐷 = (𝑆t 𝐷))
81, 7mpdan 683 . . . . . . 7 (𝜑𝐷 = (𝑆t 𝐷))
98rabeqdv 3409 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
109adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} = {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏})
11 issmflelem.x . . . . . . 7 𝑥𝜑
12 nfv 1918 . . . . . . 7 𝑥 𝑏 ∈ ℝ
1311, 12nfan 1903 . . . . . 6 𝑥(𝜑𝑏 ∈ ℝ)
14 issmflelem.a . . . . . . 7 𝑎𝜑
15 nfv 1918 . . . . . . 7 𝑎 𝑏 ∈ ℝ
1614, 15nfan 1903 . . . . . 6 𝑎(𝜑𝑏 ∈ ℝ)
173uniexd 7573 . . . . . . . . . . 11 (𝜑 𝑆 ∈ V)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
1918, 5ssexd 5243 . . . . . . . . 9 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
20 eqid 2738 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
214, 19, 20subsalsal 43788 . . . . . . . 8 ((𝜑𝐷 𝑆) → (𝑆t 𝐷) ∈ SAlg)
221, 21mpdan 683 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
24 eqid 2738 . . . . . 6 (𝑆t 𝐷) = (𝑆t 𝐷)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥 (𝑆t 𝐷))
261, 6mpdan 683 . . . . . . . . . . 11 (𝜑 (𝑆t 𝐷) = 𝐷)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑥 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
2825, 27eleqtrd 2841 . . . . . . . . 9 ((𝜑𝑥 (𝑆t 𝐷)) → 𝑥𝐷)
292ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
3028, 29syldan 590 . . . . . . . 8 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ)
3130rexrd 10956 . . . . . . 7 ((𝜑𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3231adantlr 711 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥 (𝑆t 𝐷)) → (𝐹𝑥) ∈ ℝ*)
3326rabeqdv 3409 . . . . . . . . 9 (𝜑 → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
3433adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
35 issmflelem.l . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3634, 35eqeltrd 2839 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
3736adantlr 711 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
38 simpr 484 . . . . . 6 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3913, 16, 23, 24, 32, 37, 38salpreimalelt 44152 . . . . 5 ((𝜑𝑏 ∈ ℝ) → {𝑥 (𝑆t 𝐷) ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4010, 39eqeltrd 2839 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
4140ralrimiva 3107 . . 3 (𝜑 → ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))
421, 2, 413jca 1126 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷)))
43 issmflelem.d . . 3 𝐷 = dom 𝐹
443, 43issmf 44151 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑏} ∈ (𝑆t 𝐷))))
4542, 44mpbird 256 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  *cxr 10939   < clt 10940  cle 10941  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  issmfle  44168
  Copyright terms: Public domain W3C validator