MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   GIF version

Theorem caurcvgr 15722
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvgr (𝜑𝐹𝑟 (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caurcvgr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 caurcvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
3 caurcvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
4 caurcvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5 1rp 13061 . . . . . 6 1 ∈ ℝ+
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
71, 2, 3, 4, 6caucvgrlem 15721 . . . 4 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))))
8 simpl 482 . . . . 5 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
98rexlimivw 3157 . . . 4 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
107, 9syl 17 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1110recnd 11318 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
121adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
132adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝐴⟶ℝ)
143adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → sup(𝐴, ℝ*, < ) = +∞)
154adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
16 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
17 3rp 13063 . . . . . . . 8 3 ∈ ℝ+
18 rpdivcl 13082 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
1916, 17, 18sylancl 585 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2012, 13, 14, 15, 19caucvgrlem 15721 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
21 simpr 484 . . . . . . 7 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2221reximi 3090 . . . . . 6 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2320, 22syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
24 ssrexv 4078 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
2512, 23, 24sylc 65 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
26 rpcn 13067 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
2726adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
28 3cn 12374 . . . . . . . . 9 3 ∈ ℂ
2928a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ∈ ℂ)
30 3ne0 12399 . . . . . . . . 9 3 ≠ 0
3130a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ≠ 0)
3227, 29, 31divcan2d 12072 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (3 · (𝑦 / 3)) = 𝑦)
3332breq2d 5178 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)) ↔ (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3433imbi2d 340 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3534rexralbidv 3229 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3625, 35mpbid 232 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3736ralrimiva 3152 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
38 ax-resscn 11241 . . . 4 ℝ ⊆ ℂ
39 fss 6763 . . . 4 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
402, 38, 39sylancl 585 . . 3 (𝜑𝐹:𝐴⟶ℂ)
41 eqidd 2741 . . 3 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
4240, 1, 41rlim 15541 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))))
4311, 37, 42mpbir2and 712 1 (𝜑𝐹𝑟 (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  3c3 12349  +crp 13057  abscabs 15283  lim supclsp 15516  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-rlim 15535
This theorem is referenced by:  caucvgrlem2  15723  caurcvg  15725
  Copyright terms: Public domain W3C validator