MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   GIF version

Theorem caurcvgr 14691
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvgr (𝜑𝐹𝑟 (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caurcvgr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 caurcvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
3 caurcvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
4 caurcvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5 1rp 12032 . . . . . 6 1 ∈ ℝ+
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
71, 2, 3, 4, 6caucvgrlem 14690 . . . 4 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))))
8 simpl 474 . . . . 5 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
98rexlimivw 3176 . . . 4 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
107, 9syl 17 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1110recnd 10322 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
121adantr 472 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
132adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝐴⟶ℝ)
143adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → sup(𝐴, ℝ*, < ) = +∞)
154adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
16 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
17 3re 11352 . . . . . . . . 9 3 ∈ ℝ
18 3pos 11384 . . . . . . . . 9 0 < 3
1917, 18elrpii 12031 . . . . . . . 8 3 ∈ ℝ+
20 rpdivcl 12054 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2116, 19, 20sylancl 580 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2212, 13, 14, 15, 21caucvgrlem 14690 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
23 simpr 477 . . . . . . 7 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2423reximi 3157 . . . . . 6 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2522, 24syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
26 ssrexv 3827 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
2712, 25, 26sylc 65 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
28 rpcn 12040 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
2928adantl 473 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
30 3cn 11353 . . . . . . . . 9 3 ∈ ℂ
3130a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ∈ ℂ)
32 3ne0 11385 . . . . . . . . 9 3 ≠ 0
3332a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ≠ 0)
3429, 31, 33divcan2d 11057 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (3 · (𝑦 / 3)) = 𝑦)
3534breq2d 4821 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)) ↔ (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3635imbi2d 331 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3736rexralbidv 3205 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3827, 37mpbid 223 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3938ralrimiva 3113 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
40 ax-resscn 10246 . . . 4 ℝ ⊆ ℂ
41 fss 6236 . . . 4 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
422, 40, 41sylancl 580 . . 3 (𝜑𝐹:𝐴⟶ℂ)
43 eqidd 2766 . . 3 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
4442, 1, 43rlim 14513 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))))
4511, 39, 44mpbir2and 704 1 (𝜑𝐹𝑟 (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732   class class class wbr 4809  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  cc 10187  cr 10188  0cc0 10189  1c1 10190   · cmul 10194  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  3c3 11328  +crp 12028  abscabs 14261  lim supclsp 14488  𝑟 crli 14503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-rlim 14507
This theorem is referenced by:  caucvgrlem2  14692  caurcvg  14694
  Copyright terms: Public domain W3C validator