MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   GIF version

Theorem caurcvgr 15558
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvgr (𝜑𝐹𝑟 (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caurcvgr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 caurcvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
3 caurcvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
4 caurcvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5 1rp 12919 . . . . . 6 1 ∈ ℝ+
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
71, 2, 3, 4, 6caucvgrlem 15557 . . . 4 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))))
8 simpl 483 . . . . 5 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
98rexlimivw 3148 . . . 4 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
107, 9syl 17 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1110recnd 11183 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
121adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
132adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝐴⟶ℝ)
143adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → sup(𝐴, ℝ*, < ) = +∞)
154adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
16 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
17 3rp 12921 . . . . . . . 8 3 ∈ ℝ+
18 rpdivcl 12940 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
1916, 17, 18sylancl 586 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2012, 13, 14, 15, 19caucvgrlem 15557 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
21 simpr 485 . . . . . . 7 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2221reximi 3087 . . . . . 6 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2320, 22syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
24 ssrexv 4011 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
2512, 23, 24sylc 65 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
26 rpcn 12925 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
2726adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
28 3cn 12234 . . . . . . . . 9 3 ∈ ℂ
2928a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ∈ ℂ)
30 3ne0 12259 . . . . . . . . 9 3 ≠ 0
3130a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ≠ 0)
3227, 29, 31divcan2d 11933 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (3 · (𝑦 / 3)) = 𝑦)
3332breq2d 5117 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)) ↔ (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3433imbi2d 340 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3534rexralbidv 3214 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3625, 35mpbid 231 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3736ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
38 ax-resscn 11108 . . . 4 ℝ ⊆ ℂ
39 fss 6685 . . . 4 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
402, 38, 39sylancl 586 . . 3 (𝜑𝐹:𝐴⟶ℂ)
41 eqidd 2737 . . 3 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
4240, 1, 41rlim 15377 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))))
4311, 37, 42mpbir2and 711 1 (𝜑𝐹𝑟 (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  3c3 12209  +crp 12915  abscabs 15119  lim supclsp 15352  𝑟 crli 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-rlim 15371
This theorem is referenced by:  caucvgrlem2  15559  caurcvg  15561
  Copyright terms: Public domain W3C validator