MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Visualization version   GIF version

Theorem o1compt 15296
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1 (𝜑𝐹:𝐴⟶ℂ)
o1compt.2 (𝜑𝐹 ∈ 𝑂(1))
o1compt.3 ((𝜑𝑦𝐵) → 𝐶𝐴)
o1compt.4 (𝜑𝐵 ⊆ ℝ)
o1compt.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
Assertion
Ref Expression
o1compt (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝐶,𝑚,𝑥   𝜑,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem o1compt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 o1compt.2 . 2 (𝜑𝐹 ∈ 𝑂(1))
3 o1compt.3 . . 3 ((𝜑𝑦𝐵) → 𝐶𝐴)
43fmpttd 6989 . 2 (𝜑 → (𝑦𝐵𝐶):𝐵𝐴)
5 o1compt.4 . 2 (𝜑𝐵 ⊆ ℝ)
6 o1compt.5 . . 3 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
7 nfv 1917 . . . . . . . 8 𝑦 𝑥𝑧
8 nfcv 2907 . . . . . . . . 9 𝑦𝑚
9 nfcv 2907 . . . . . . . . 9 𝑦
10 nffvmpt1 6785 . . . . . . . . 9 𝑦((𝑦𝐵𝐶)‘𝑧)
118, 9, 10nfbr 5121 . . . . . . . 8 𝑦 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)
127, 11nfim 1899 . . . . . . 7 𝑦(𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧))
13 nfv 1917 . . . . . . 7 𝑧(𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))
14 breq2 5078 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
15 fveq2 6774 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑦𝐵𝐶)‘𝑧) = ((𝑦𝐵𝐶)‘𝑦))
1615breq2d 5086 . . . . . . . 8 (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
1714, 16imbi12d 345 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))))
1812, 13, 17cbvralw 3373 . . . . . 6 (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
19 simpr 485 . . . . . . . . . 10 ((𝜑𝑦𝐵) → 𝑦𝐵)
20 eqid 2738 . . . . . . . . . . 11 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
2120fvmpt2 6886 . . . . . . . . . 10 ((𝑦𝐵𝐶𝐴) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2219, 3, 21syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐵) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2322breq2d 5086 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦) ↔ 𝑚𝐶))
2423imbi2d 341 . . . . . . 7 ((𝜑𝑦𝐵) → ((𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ (𝑥𝑦𝑚𝐶)))
2524ralbidva 3111 . . . . . 6 (𝜑 → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2618, 25bitrid 282 . . . . 5 (𝜑 → (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2726rexbidv 3226 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2827adantr 481 . . 3 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
296, 28mpbird 256 . 2 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)))
301, 2, 4, 5, 29o1co 15295 1 (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cmpt 5157  ccom 5593  wf 6429  cfv 6433  cc 10869  cr 10870  cle 11010  𝑂(1)co1 15195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-o1 15199
This theorem is referenced by:  dchrisum0  26668
  Copyright terms: Public domain W3C validator