MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Visualization version   GIF version

Theorem o1compt 15633
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1 (𝜑𝐹:𝐴⟶ℂ)
o1compt.2 (𝜑𝐹 ∈ 𝑂(1))
o1compt.3 ((𝜑𝑦𝐵) → 𝐶𝐴)
o1compt.4 (𝜑𝐵 ⊆ ℝ)
o1compt.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
Assertion
Ref Expression
o1compt (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝐶,𝑚,𝑥   𝜑,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem o1compt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 o1compt.2 . 2 (𝜑𝐹 ∈ 𝑂(1))
3 o1compt.3 . . 3 ((𝜑𝑦𝐵) → 𝐶𝐴)
43fmpttd 7149 . 2 (𝜑 → (𝑦𝐵𝐶):𝐵𝐴)
5 o1compt.4 . 2 (𝜑𝐵 ⊆ ℝ)
6 o1compt.5 . . 3 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
7 nfv 1913 . . . . . . . 8 𝑦 𝑥𝑧
8 nfcv 2908 . . . . . . . . 9 𝑦𝑚
9 nfcv 2908 . . . . . . . . 9 𝑦
10 nffvmpt1 6931 . . . . . . . . 9 𝑦((𝑦𝐵𝐶)‘𝑧)
118, 9, 10nfbr 5213 . . . . . . . 8 𝑦 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)
127, 11nfim 1895 . . . . . . 7 𝑦(𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧))
13 nfv 1913 . . . . . . 7 𝑧(𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))
14 breq2 5170 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
15 fveq2 6920 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑦𝐵𝐶)‘𝑧) = ((𝑦𝐵𝐶)‘𝑦))
1615breq2d 5178 . . . . . . . 8 (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
1714, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))))
1812, 13, 17cbvralw 3312 . . . . . 6 (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
19 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐵) → 𝑦𝐵)
20 eqid 2740 . . . . . . . . . . 11 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
2120fvmpt2 7040 . . . . . . . . . 10 ((𝑦𝐵𝐶𝐴) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2219, 3, 21syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝐵) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2322breq2d 5178 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦) ↔ 𝑚𝐶))
2423imbi2d 340 . . . . . . 7 ((𝜑𝑦𝐵) → ((𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ (𝑥𝑦𝑚𝐶)))
2524ralbidva 3182 . . . . . 6 (𝜑 → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2618, 25bitrid 283 . . . . 5 (𝜑 → (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2726rexbidv 3185 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2827adantr 480 . . 3 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
296, 28mpbird 257 . 2 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)))
301, 2, 4, 5, 29o1co 15632 1 (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  ccom 5704  wf 6569  cfv 6573  cc 11182  cr 11183  cle 11325  𝑂(1)co1 15532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413  df-o1 15536
This theorem is referenced by:  dchrisum0  27582
  Copyright terms: Public domain W3C validator