MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Visualization version   GIF version

Theorem o1compt 15608
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1 (𝜑𝐹:𝐴⟶ℂ)
o1compt.2 (𝜑𝐹 ∈ 𝑂(1))
o1compt.3 ((𝜑𝑦𝐵) → 𝐶𝐴)
o1compt.4 (𝜑𝐵 ⊆ ℝ)
o1compt.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
Assertion
Ref Expression
o1compt (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝐶,𝑚,𝑥   𝜑,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem o1compt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 o1compt.2 . 2 (𝜑𝐹 ∈ 𝑂(1))
3 o1compt.3 . . 3 ((𝜑𝑦𝐵) → 𝐶𝐴)
43fmpttd 7110 . 2 (𝜑 → (𝑦𝐵𝐶):𝐵𝐴)
5 o1compt.4 . 2 (𝜑𝐵 ⊆ ℝ)
6 o1compt.5 . . 3 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
7 nfv 1914 . . . . . . . 8 𝑦 𝑥𝑧
8 nfcv 2899 . . . . . . . . 9 𝑦𝑚
9 nfcv 2899 . . . . . . . . 9 𝑦
10 nffvmpt1 6892 . . . . . . . . 9 𝑦((𝑦𝐵𝐶)‘𝑧)
118, 9, 10nfbr 5171 . . . . . . . 8 𝑦 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)
127, 11nfim 1896 . . . . . . 7 𝑦(𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧))
13 nfv 1914 . . . . . . 7 𝑧(𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))
14 breq2 5128 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
15 fveq2 6881 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑦𝐵𝐶)‘𝑧) = ((𝑦𝐵𝐶)‘𝑦))
1615breq2d 5136 . . . . . . . 8 (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
1714, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))))
1812, 13, 17cbvralw 3290 . . . . . 6 (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
19 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐵) → 𝑦𝐵)
20 eqid 2736 . . . . . . . . . . 11 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
2120fvmpt2 7002 . . . . . . . . . 10 ((𝑦𝐵𝐶𝐴) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2219, 3, 21syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐵) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2322breq2d 5136 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦) ↔ 𝑚𝐶))
2423imbi2d 340 . . . . . . 7 ((𝜑𝑦𝐵) → ((𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ (𝑥𝑦𝑚𝐶)))
2524ralbidva 3162 . . . . . 6 (𝜑 → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2618, 25bitrid 283 . . . . 5 (𝜑 → (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2726rexbidv 3165 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2827adantr 480 . . 3 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
296, 28mpbird 257 . 2 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)))
301, 2, 4, 5, 29o1co 15607 1 (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  cmpt 5206  ccom 5663  wf 6532  cfv 6536  cc 11132  cr 11133  cle 11275  𝑂(1)co1 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ico 13373  df-o1 15511
This theorem is referenced by:  dchrisum0  27488
  Copyright terms: Public domain W3C validator