![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1compt | Structured version Visualization version GIF version |
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
o1compt.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
o1compt.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) |
o1compt.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
o1compt.4 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
o1compt.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) |
Ref | Expression |
---|---|
o1compt | ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1compt.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | o1compt.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) | |
3 | o1compt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
4 | 3 | fmpttd 7119 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐴) |
5 | o1compt.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
6 | o1compt.5 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) | |
7 | nfv 1910 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑧 | |
8 | nfcv 2898 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑚 | |
9 | nfcv 2898 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
10 | nffvmpt1 6902 | . . . . . . . . 9 ⊢ Ⅎ𝑦((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) | |
11 | 8, 9, 10 | nfbr 5189 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) |
12 | 7, 11 | nfim 1892 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) |
13 | nfv 1910 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
14 | breq2 5146 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦)) | |
15 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
16 | 15 | breq2d 5154 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
17 | 14, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)))) |
18 | 12, 13, 17 | cbvralw 3298 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
19 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
20 | eqid 2727 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
21 | 20 | fvmpt2 7010 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
22 | 19, 3, 21 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
23 | 22 | breq2d 5154 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) ↔ 𝑚 ≤ 𝐶)) |
24 | 23 | imbi2d 340 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
25 | 24 | ralbidva 3170 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
26 | 18, 25 | bitrid 283 | . . . . 5 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
27 | 26 | rexbidv 3173 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
29 | 6, 28 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧))) |
30 | 1, 2, 4, 5, 29 | o1co 15554 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 class class class wbr 5142 ↦ cmpt 5225 ∘ ccom 5676 ⟶wf 6538 ‘cfv 6542 ℂcc 11128 ℝcr 11129 ≤ cle 11271 𝑂(1)co1 15454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-pre-lttri 11204 ax-pre-lttrn 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-ico 13354 df-o1 15458 |
This theorem is referenced by: dchrisum0 27440 |
Copyright terms: Public domain | W3C validator |