| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1compt | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| o1compt.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| o1compt.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) |
| o1compt.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
| o1compt.4 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| o1compt.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) |
| Ref | Expression |
|---|---|
| o1compt | ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1compt.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | o1compt.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) | |
| 3 | o1compt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
| 4 | 3 | fmpttd 7087 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐴) |
| 5 | o1compt.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 6 | o1compt.5 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) | |
| 7 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑧 | |
| 8 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑚 | |
| 9 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
| 10 | nffvmpt1 6869 | . . . . . . . . 9 ⊢ Ⅎ𝑦((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) | |
| 11 | 8, 9, 10 | nfbr 5154 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) |
| 12 | 7, 11 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) |
| 13 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
| 14 | breq2 5111 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦)) | |
| 15 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
| 16 | 15 | breq2d 5119 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
| 17 | 14, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)))) |
| 18 | 12, 13, 17 | cbvralw 3280 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
| 19 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 20 | eqid 2729 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 21 | 20 | fvmpt2 6979 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
| 22 | 19, 3, 21 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
| 23 | 22 | breq2d 5119 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) ↔ 𝑚 ≤ 𝐶)) |
| 24 | 23 | imbi2d 340 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
| 25 | 24 | ralbidva 3154 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
| 26 | 18, 25 | bitrid 283 | . . . . 5 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
| 27 | 26 | rexbidv 3157 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
| 29 | 6, 28 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧))) |
| 30 | 1, 2, 4, 5, 29 | o1co 15552 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 ℂcc 11066 ℝcr 11067 ≤ cle 11209 𝑂(1)co1 15452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-o1 15456 |
| This theorem is referenced by: dchrisum0 27431 |
| Copyright terms: Public domain | W3C validator |