![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1compt | Structured version Visualization version GIF version |
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
o1compt.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
o1compt.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) |
o1compt.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
o1compt.4 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
o1compt.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) |
Ref | Expression |
---|---|
o1compt | ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1compt.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | o1compt.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) | |
3 | o1compt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
4 | 3 | fmpttd 7149 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐴) |
5 | o1compt.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
6 | o1compt.5 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) | |
7 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑧 | |
8 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑚 | |
9 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
10 | nffvmpt1 6931 | . . . . . . . . 9 ⊢ Ⅎ𝑦((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) | |
11 | 8, 9, 10 | nfbr 5213 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) |
12 | 7, 11 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) |
13 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
14 | breq2 5170 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦)) | |
15 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
16 | 15 | breq2d 5178 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
17 | 14, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)))) |
18 | 12, 13, 17 | cbvralw 3312 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
19 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
20 | eqid 2740 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
21 | 20 | fvmpt2 7040 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
22 | 19, 3, 21 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
23 | 22 | breq2d 5178 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) ↔ 𝑚 ≤ 𝐶)) |
24 | 23 | imbi2d 340 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
25 | 24 | ralbidva 3182 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
26 | 18, 25 | bitrid 283 | . . . . 5 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
27 | 26 | rexbidv 3185 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
29 | 6, 28 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧))) |
30 | 1, 2, 4, 5, 29 | o1co 15632 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 ℂcc 11182 ℝcr 11183 ≤ cle 11325 𝑂(1)co1 15532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 df-o1 15536 |
This theorem is referenced by: dchrisum0 27582 |
Copyright terms: Public domain | W3C validator |