MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimeq Structured version   Visualization version   GIF version

Theorem rlimeq 15510
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimeq.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimeq.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimeq.3 (𝜑𝐷 ∈ ℝ)
rlimeq.4 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
Assertion
Ref Expression
rlimeq (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐸(𝑥)

Proof of Theorem rlimeq
StepHypRef Expression
1 rlimss 15443 . . 3 ((𝑥𝐴𝐵) ⇝𝑟 𝐸 → dom (𝑥𝐴𝐵) ⊆ ℝ)
2 eqid 2724 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 rlimeq.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
42, 3dmmptd 6685 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54sseq1d 4005 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
61, 5imbitrid 243 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸𝐴 ⊆ ℝ))
7 rlimss 15443 . . 3 ((𝑥𝐴𝐶) ⇝𝑟 𝐸 → dom (𝑥𝐴𝐶) ⊆ ℝ)
8 eqid 2724 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
9 rlimeq.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
108, 9dmmptd 6685 . . . 4 (𝜑 → dom (𝑥𝐴𝐶) = 𝐴)
1110sseq1d 4005 . . 3 (𝜑 → (dom (𝑥𝐴𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
127, 11imbitrid 243 . 2 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐴 ⊆ ℝ))
13 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)))
14 elin 3956 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1513, 14sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1615simpld 494 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥𝐴)
1715simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞))
18 rlimeq.3 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
19 elicopnf 13419 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2018, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2120biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2217, 21syldan 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2322simprd 495 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷𝑥)
2416, 23jca 511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝐷𝑥))
25 rlimeq.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
2624, 25syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶)
2726mpteq2dva 5238 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
28 inss1 4220 . . . . . . . . . 10 (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴
29 resmpt 6027 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)
31 resmpt 6027 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
3228, 31ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)
3327, 30, 323eqtr4g 2789 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))))
34 resres 5984 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞)))
35 resres 5984 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))
3633, 34, 353eqtr4g 2789 . . . . . . 7 (𝜑 → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)))
37 ssid 3996 . . . . . . . 8 𝐴𝐴
38 resmpt 6027 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵))
39 reseq1 5965 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵) → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)))
4037, 38, 39mp2b 10 . . . . . . 7 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞))
41 resmpt 6027 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42 reseq1 5965 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶) → (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4337, 41, 42mp2b 10 . . . . . . 7 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞))
4436, 40, 433eqtr3g 2787 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4544breq1d 5148 . . . . 5 (𝜑 → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
4645adantr 480 . . . 4 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
473fmpttd 7106 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
4847adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
49 simpr 484 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
5018adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ)
5148, 49, 50rlimresb 15506 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
529fmpttd 7106 . . . . . 6 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℂ)
5352adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐶):𝐴⟶ℂ)
5453, 49, 50rlimresb 15506 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
5546, 51, 543bitr4d 311 . . 3 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
5655ex 412 . 2 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸)))
576, 12, 56pm5.21ndd 379 1 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cin 3939  wss 3940   class class class wbr 5138  cmpt 5221  dom cdm 5666  cres 5668  wf 6529  (class class class)co 7401  cc 11104  cr 11105  +∞cpnf 11242  cle 11246  [,)cico 13323  𝑟 crli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-ico 13327  df-rlim 15430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator