Proof of Theorem rlimeq
Step | Hyp | Ref
| Expression |
1 | | rlimss 15139 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
2 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | rlimeq.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
4 | 2, 3 | dmmptd 6562 |
. . . 4
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
5 | 4 | sseq1d 3948 |
. . 3
⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
6 | 1, 5 | syl5ib 243 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ)) |
7 | | rlimss 15139 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸 → dom (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ℝ) |
8 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
9 | | rlimeq.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
10 | 8, 9 | dmmptd 6562 |
. . . 4
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐶) = 𝐴) |
11 | 10 | sseq1d 3948 |
. . 3
⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
12 | 7, 11 | syl5ib 243 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ)) |
13 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) |
14 | | elin 3899 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐷[,)+∞))) |
15 | 13, 14 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐷[,)+∞))) |
16 | 15 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ 𝐴) |
17 | 15 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞)) |
18 | | rlimeq.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ ℝ) |
19 | | elicopnf 13106 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥))) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥))) |
21 | 20 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥)) |
22 | 17, 21 | syldan 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥)) |
23 | 22 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷 ≤ 𝑥) |
24 | 16, 23 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) |
25 | | rlimeq.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) |
26 | 24, 25 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶) |
27 | 26 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)) |
28 | | inss1 4159 |
. . . . . . . . . 10
⊢ (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 |
29 | | resmpt 5934 |
. . . . . . . . . 10
⊢ ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) |
31 | | resmpt 5934 |
. . . . . . . . . 10
⊢ ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)) |
32 | 28, 31 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶) |
33 | 27, 30, 32 | 3eqtr4g 2804 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))) |
34 | | resres 5893 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) |
35 | | resres 5893 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) |
36 | 33, 34, 35 | 3eqtr4g 2804 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞))) |
37 | | ssid 3939 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝐴 |
38 | | resmpt 5934 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
39 | | reseq1 5874 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐵) → (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞))) |
40 | 37, 38, 39 | mp2b 10 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞)) |
41 | | resmpt 5934 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
42 | | reseq1 5874 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞))) |
43 | 37, 41, 42 | mp2b 10 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞)) |
44 | 36, 40, 43 | 3eqtr3g 2802 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞))) |
45 | 44 | breq1d 5080 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸)) |
46 | 45 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → (((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸)) |
47 | 3 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
48 | 47 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
49 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ) |
50 | 18 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ) |
51 | 48, 49, 50 | rlimresb 15202 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸)) |
52 | 9 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
53 | 52 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
54 | 53, 49, 50 | rlimresb 15202 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟
𝐸)) |
55 | 46, 51, 54 | 3bitr4d 310 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸)) |
56 | 55 | ex 412 |
. 2
⊢ (𝜑 → (𝐴 ⊆ ℝ → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸))) |
57 | 6, 12, 56 | pm5.21ndd 380 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸)) |