MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimeq Structured version   Visualization version   GIF version

Theorem rlimeq 14764
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimeq.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimeq.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimeq.3 (𝜑𝐷 ∈ ℝ)
rlimeq.4 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
Assertion
Ref Expression
rlimeq (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐸(𝑥)

Proof of Theorem rlimeq
StepHypRef Expression
1 rlimss 14697 . . 3 ((𝑥𝐴𝐵) ⇝𝑟 𝐸 → dom (𝑥𝐴𝐵) ⊆ ℝ)
2 eqid 2797 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 rlimeq.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
42, 3dmmptd 6368 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54sseq1d 3925 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
61, 5syl5ib 245 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸𝐴 ⊆ ℝ))
7 rlimss 14697 . . 3 ((𝑥𝐴𝐶) ⇝𝑟 𝐸 → dom (𝑥𝐴𝐶) ⊆ ℝ)
8 eqid 2797 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
9 rlimeq.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
108, 9dmmptd 6368 . . . 4 (𝜑 → dom (𝑥𝐴𝐶) = 𝐴)
1110sseq1d 3925 . . 3 (𝜑 → (dom (𝑥𝐴𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
127, 11syl5ib 245 . 2 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐴 ⊆ ℝ))
13 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)))
14 elin 4096 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1513, 14sylib 219 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1615simpld 495 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥𝐴)
1715simprd 496 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞))
18 rlimeq.3 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
19 elicopnf 12687 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2018, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2120biimpa 477 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2217, 21syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2322simprd 496 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷𝑥)
2416, 23jca 512 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝐷𝑥))
25 rlimeq.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
2624, 25syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶)
2726mpteq2dva 5062 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
28 inss1 4131 . . . . . . . . . 10 (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴
29 resmpt 5793 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)
31 resmpt 5793 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
3228, 31ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)
3327, 30, 323eqtr4g 2858 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))))
34 resres 5754 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞)))
35 resres 5754 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))
3633, 34, 353eqtr4g 2858 . . . . . . 7 (𝜑 → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)))
37 ssid 3916 . . . . . . . 8 𝐴𝐴
38 resmpt 5793 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵))
39 reseq1 5735 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵) → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)))
4037, 38, 39mp2b 10 . . . . . . 7 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞))
41 resmpt 5793 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42 reseq1 5735 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶) → (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4337, 41, 42mp2b 10 . . . . . . 7 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞))
4436, 40, 433eqtr3g 2856 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4544breq1d 4978 . . . . 5 (𝜑 → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
4645adantr 481 . . . 4 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
473fmpttd 6749 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
4847adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
49 simpr 485 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
5018adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ)
5148, 49, 50rlimresb 14760 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
529fmpttd 6749 . . . . . 6 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℂ)
5352adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐶):𝐴⟶ℂ)
5453, 49, 50rlimresb 14760 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ⇝𝑟 𝐸))
5546, 51, 543bitr4d 312 . . 3 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
5655ex 413 . 2 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸)))
576, 12, 56pm5.21ndd 381 1 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐸 ↔ (𝑥𝐴𝐶) ⇝𝑟 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  cin 3864  wss 3865   class class class wbr 4968  cmpt 5047  dom cdm 5450  cres 5452  wf 6228  (class class class)co 7023  cc 10388  cr 10389  +∞cpnf 10525  cle 10529  [,)cico 12594  𝑟 crli 14680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-pre-lttri 10464  ax-pre-lttrn 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-ico 12598  df-rlim 14684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator