MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Visualization version   GIF version

Theorem rlimcld2 14927
Description: If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimcld2.3 (𝜑𝐷 ⊆ ℂ)
rlimcld2.4 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
rlimcld2.5 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
rlimcld2.6 ((𝜑𝑥𝐴) → 𝐵𝐷)
Assertion
Ref Expression
rlimcld2 (𝜑𝐶𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)

Proof of Theorem rlimcld2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐷)
21ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝐷)
32adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑥𝐴 𝐵𝐷)
4 rlimcld2.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
54adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
6 rlimcl 14852 . . . . . 6 ((𝑥𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ ℂ)
8 simpr 488 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ 𝐶𝐷)
97, 8eldifd 3892 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ (ℂ ∖ 𝐷))
10 rlimcld2.4 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
1110ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
1211adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
13 nfcsb1v 3852 . . . . . 6 𝑦𝐶 / 𝑦𝑅
1413nfel1 2971 . . . . 5 𝑦𝐶 / 𝑦𝑅 ∈ ℝ+
15 csbeq1a 3842 . . . . . 6 (𝑦 = 𝐶𝑅 = 𝐶 / 𝑦𝑅)
1615eleq1d 2874 . . . . 5 (𝑦 = 𝐶 → (𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
1714, 16rspc 3559 . . . 4 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
189, 12, 17sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
193, 18, 5rlimi 14862 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
2018ad2antrr 725 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
2120rpred 12419 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ)
22 rlimcld2.3 . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℂ)
2322ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐷 ⊆ ℂ)
241ad4ant14 751 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝐷)
2523, 24sseldd 3916 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
267ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
2725, 26subcld 10986 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
2827abscld 14788 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
29 rlimcld2.5 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
3029ralrimiva 3149 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → ∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3130ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3231adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
33 nfcv 2955 . . . . . . . . . . . 12 𝑦𝐷
34 nfcv 2955 . . . . . . . . . . . . 13 𝑦
35 nfcv 2955 . . . . . . . . . . . . 13 𝑦(abs‘(𝑧𝐶))
3613, 34, 35nfbr 5077 . . . . . . . . . . . 12 𝑦𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
3733, 36nfralw 3189 . . . . . . . . . . 11 𝑦𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
38 oveq2 7143 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → (𝑧𝑦) = (𝑧𝐶))
3938fveq2d 6649 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (abs‘(𝑧𝑦)) = (abs‘(𝑧𝐶)))
4015, 39breq12d 5043 . . . . . . . . . . . 12 (𝑦 = 𝐶 → (𝑅 ≤ (abs‘(𝑧𝑦)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4140ralbidv 3162 . . . . . . . . . . 11 (𝑦 = 𝐶 → (∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) ↔ ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4237, 41rspc 3559 . . . . . . . . . 10 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
439, 32, 42sylc 65 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
4443ad2antrr 725 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
45 fvoveq1 7158 . . . . . . . . . 10 (𝑧 = 𝐵 → (abs‘(𝑧𝐶)) = (abs‘(𝐵𝐶)))
4645breq2d 5042 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4746rspcv 3566 . . . . . . . 8 (𝐵𝐷 → (∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4824, 44, 47sylc 65 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)))
4921, 28, 48lensymd 10780 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
50 id 22 . . . . . . 7 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5150imp 410 . . . . . 6 (((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥) → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
5249, 51nsyl 142 . . . . 5 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
5352nrexdv 3229 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
54 rlimcld2.1 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
55 eqid 2798 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5655, 1dmmptd 6465 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
57 rlimss 14851 . . . . . . . . . . . 12 ((𝑥𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑥𝐴𝐵) ⊆ ℝ)
584, 57syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
5956, 58eqsstrrd 3954 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
60 ressxr 10674 . . . . . . . . . 10 ℝ ⊆ ℝ*
6159, 60sstrdi 3927 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
62 supxrunb1 12700 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62syl 17 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6454, 63mpbird 260 . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6564adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6665r19.21bi 3173 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐴 𝑟𝑥)
67 r19.29 3216 . . . . . 6 ((∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ ∃𝑥𝐴 𝑟𝑥) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
6867expcom 417 . . . . 5 (∃𝑥𝐴 𝑟𝑥 → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
6966, 68syl 17 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7053, 69mtod 201 . . 3 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7170nrexdv 3229 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7219, 71condan 817 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  csb 3828  cdif 3878  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  supcsup 8888  cc 10524  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859  +crp 12377  abscabs 14585  𝑟 crli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-rlim 14838
This theorem is referenced by:  rlimrege0  14928  rlimrecl  14929
  Copyright terms: Public domain W3C validator