MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Visualization version   GIF version

Theorem rlimcld2 15485
Description: If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimcld2.3 (𝜑𝐷 ⊆ ℂ)
rlimcld2.4 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
rlimcld2.5 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
rlimcld2.6 ((𝜑𝑥𝐴) → 𝐵𝐷)
Assertion
Ref Expression
rlimcld2 (𝜑𝐶𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)

Proof of Theorem rlimcld2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐷)
21ralrimiva 3121 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝐷)
32adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑥𝐴 𝐵𝐷)
4 rlimcld2.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
54adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
6 rlimcl 15410 . . . . . 6 ((𝑥𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ ℂ)
8 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ 𝐶𝐷)
97, 8eldifd 3914 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ (ℂ ∖ 𝐷))
10 rlimcld2.4 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
1110ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
1211adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
13 nfcsb1v 3875 . . . . . 6 𝑦𝐶 / 𝑦𝑅
1413nfel1 2908 . . . . 5 𝑦𝐶 / 𝑦𝑅 ∈ ℝ+
15 csbeq1a 3865 . . . . . 6 (𝑦 = 𝐶𝑅 = 𝐶 / 𝑦𝑅)
1615eleq1d 2813 . . . . 5 (𝑦 = 𝐶 → (𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
1714, 16rspc 3565 . . . 4 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
189, 12, 17sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
193, 18, 5rlimi 15420 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
2018ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
2120rpred 12937 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ)
22 rlimcld2.3 . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℂ)
2322ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐷 ⊆ ℂ)
241ad4ant14 752 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝐷)
2523, 24sseldd 3936 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
267ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
2725, 26subcld 11475 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
2827abscld 15346 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
29 rlimcld2.5 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
3029ralrimiva 3121 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → ∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3130ralrimiva 3121 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3231adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
33 nfcv 2891 . . . . . . . . . . . 12 𝑦𝐷
34 nfcv 2891 . . . . . . . . . . . . 13 𝑦
35 nfcv 2891 . . . . . . . . . . . . 13 𝑦(abs‘(𝑧𝐶))
3613, 34, 35nfbr 5139 . . . . . . . . . . . 12 𝑦𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
3733, 36nfralw 3276 . . . . . . . . . . 11 𝑦𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
38 oveq2 7357 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → (𝑧𝑦) = (𝑧𝐶))
3938fveq2d 6826 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (abs‘(𝑧𝑦)) = (abs‘(𝑧𝐶)))
4015, 39breq12d 5105 . . . . . . . . . . . 12 (𝑦 = 𝐶 → (𝑅 ≤ (abs‘(𝑧𝑦)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4140ralbidv 3152 . . . . . . . . . . 11 (𝑦 = 𝐶 → (∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) ↔ ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4237, 41rspc 3565 . . . . . . . . . 10 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
439, 32, 42sylc 65 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
4443ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
45 fvoveq1 7372 . . . . . . . . . 10 (𝑧 = 𝐵 → (abs‘(𝑧𝐶)) = (abs‘(𝐵𝐶)))
4645breq2d 5104 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4746rspcv 3573 . . . . . . . 8 (𝐵𝐷 → (∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4824, 44, 47sylc 65 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)))
4921, 28, 48lensymd 11267 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
50 id 22 . . . . . . 7 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5150imp 406 . . . . . 6 (((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥) → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
5249, 51nsyl 140 . . . . 5 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
5352nrexdv 3124 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
54 rlimcld2.1 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
55 eqid 2729 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5655, 1dmmptd 6627 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
57 rlimss 15409 . . . . . . . . . . . 12 ((𝑥𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑥𝐴𝐵) ⊆ ℝ)
584, 57syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
5956, 58eqsstrrd 3971 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
60 ressxr 11159 . . . . . . . . . 10 ℝ ⊆ ℝ*
6159, 60sstrdi 3948 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
62 supxrunb1 13221 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62syl 17 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6454, 63mpbird 257 . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6564adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6665r19.21bi 3221 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐴 𝑟𝑥)
67 r19.29 3092 . . . . . 6 ((∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ ∃𝑥𝐴 𝑟𝑥) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
6867expcom 413 . . . . 5 (∃𝑥𝐴 𝑟𝑥 → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
6966, 68syl 17 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7053, 69mtod 198 . . 3 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7170nrexdv 3124 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7219, 71condan 817 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  csb 3851  cdif 3900  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347  +crp 12893  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rlim 15396
This theorem is referenced by:  rlimrege0  15486  rlimrecl  15487
  Copyright terms: Public domain W3C validator