MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Visualization version   GIF version

Theorem rlimcld2 14935
Description: If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimcld2.3 (𝜑𝐷 ⊆ ℂ)
rlimcld2.4 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
rlimcld2.5 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
rlimcld2.6 ((𝜑𝑥𝐴) → 𝐵𝐷)
Assertion
Ref Expression
rlimcld2 (𝜑𝐶𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)

Proof of Theorem rlimcld2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐷)
21ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝐷)
32adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑥𝐴 𝐵𝐷)
4 rlimcld2.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
54adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
6 rlimcl 14860 . . . . . 6 ((𝑥𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ ℂ)
8 simpr 487 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ 𝐶𝐷)
97, 8eldifd 3947 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ (ℂ ∖ 𝐷))
10 rlimcld2.4 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
1110ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
1211adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
13 nfcsb1v 3907 . . . . . 6 𝑦𝐶 / 𝑦𝑅
1413nfel1 2994 . . . . 5 𝑦𝐶 / 𝑦𝑅 ∈ ℝ+
15 csbeq1a 3897 . . . . . 6 (𝑦 = 𝐶𝑅 = 𝐶 / 𝑦𝑅)
1615eleq1d 2897 . . . . 5 (𝑦 = 𝐶 → (𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
1714, 16rspc 3611 . . . 4 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
189, 12, 17sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
193, 18, 5rlimi 14870 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
2018ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
2120rpred 12432 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ)
22 rlimcld2.3 . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℂ)
2322ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐷 ⊆ ℂ)
241ad4ant14 750 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝐷)
2523, 24sseldd 3968 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
267ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
2725, 26subcld 10997 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
2827abscld 14796 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
29 rlimcld2.5 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
3029ralrimiva 3182 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → ∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3130ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
3231adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
33 nfcv 2977 . . . . . . . . . . . 12 𝑦𝐷
34 nfcv 2977 . . . . . . . . . . . . 13 𝑦
35 nfcv 2977 . . . . . . . . . . . . 13 𝑦(abs‘(𝑧𝐶))
3613, 34, 35nfbr 5113 . . . . . . . . . . . 12 𝑦𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
3733, 36nfralw 3225 . . . . . . . . . . 11 𝑦𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
38 oveq2 7164 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → (𝑧𝑦) = (𝑧𝐶))
3938fveq2d 6674 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (abs‘(𝑧𝑦)) = (abs‘(𝑧𝐶)))
4015, 39breq12d 5079 . . . . . . . . . . . 12 (𝑦 = 𝐶 → (𝑅 ≤ (abs‘(𝑧𝑦)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4140ralbidv 3197 . . . . . . . . . . 11 (𝑦 = 𝐶 → (∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) ↔ ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
4237, 41rspc 3611 . . . . . . . . . 10 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
439, 32, 42sylc 65 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
4443ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
45 fvoveq1 7179 . . . . . . . . . 10 (𝑧 = 𝐵 → (abs‘(𝑧𝐶)) = (abs‘(𝐵𝐶)))
4645breq2d 5078 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4746rspcv 3618 . . . . . . . 8 (𝐵𝐷 → (∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4824, 44, 47sylc 65 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)))
4921, 28, 48lensymd 10791 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
50 id 22 . . . . . . 7 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5150imp 409 . . . . . 6 (((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥) → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
5249, 51nsyl 142 . . . . 5 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
5352nrexdv 3270 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
54 rlimcld2.1 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
55 eqid 2821 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5655, 1dmmptd 6493 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
57 rlimss 14859 . . . . . . . . . . . 12 ((𝑥𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑥𝐴𝐵) ⊆ ℝ)
584, 57syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
5956, 58eqsstrrd 4006 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
60 ressxr 10685 . . . . . . . . . 10 ℝ ⊆ ℝ*
6159, 60sstrdi 3979 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
62 supxrunb1 12713 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62syl 17 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6454, 63mpbird 259 . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6564adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6665r19.21bi 3208 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐴 𝑟𝑥)
67 r19.29 3254 . . . . . 6 ((∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ ∃𝑥𝐴 𝑟𝑥) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
6867expcom 416 . . . . 5 (∃𝑥𝐴 𝑟𝑥 → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
6966, 68syl 17 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7053, 69mtod 200 . . 3 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7170nrexdv 3270 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7219, 71condan 816 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  csb 3883  cdif 3933  wss 3936   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  supcsup 8904  cc 10535  cr 10536  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  +crp 12390  abscabs 14593  𝑟 crli 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-rlim 14846
This theorem is referenced by:  rlimrege0  14936  rlimrecl  14937
  Copyright terms: Public domain W3C validator