MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Visualization version   GIF version

Theorem rlimcld2 14608
Description: If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimcld2.3 (𝜑𝐷 ⊆ ℂ)
rlimcld2.4 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
rlimcld2.5 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
rlimcld2.6 ((𝜑𝑥𝐴) → 𝐵𝐷)
Assertion
Ref Expression
rlimcld2 (𝜑𝐶𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)

Proof of Theorem rlimcld2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐷)
21ralrimiva 3113 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝐷)
32adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑥𝐴 𝐵𝐷)
4 rlimcld2.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
54adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
6 rlimcl 14533 . . . . . 6 ((𝑥𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ ℂ)
8 simpr 477 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ 𝐶𝐷)
97, 8eldifd 3745 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ (ℂ ∖ 𝐷))
10 rlimcld2.4 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
1110ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
1211adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
13 nfcsb1v 3709 . . . . . 6 𝑦𝐶 / 𝑦𝑅
1413nfel1 2922 . . . . 5 𝑦𝐶 / 𝑦𝑅 ∈ ℝ+
15 csbeq1a 3702 . . . . . 6 (𝑦 = 𝐶𝑅 = 𝐶 / 𝑦𝑅)
1615eleq1d 2829 . . . . 5 (𝑦 = 𝐶 → (𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
1714, 16rspc 3456 . . . 4 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
189, 12, 17sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
193, 18, 5rlimi 14543 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
201adantlr 706 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑥𝐴) → 𝐵𝐷)
2120adantlr 706 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝐷)
22 rlimcld2.5 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
2322ralrimiva 3113 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → ∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
2423ralrimiva 3113 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
2524adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
26 nfcv 2907 . . . . . . . . . . . 12 𝑦𝐷
27 nfcv 2907 . . . . . . . . . . . . 13 𝑦
28 nfcv 2907 . . . . . . . . . . . . 13 𝑦(abs‘(𝑧𝐶))
2913, 27, 28nfbr 4858 . . . . . . . . . . . 12 𝑦𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
3026, 29nfral 3092 . . . . . . . . . . 11 𝑦𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
31 oveq2 6854 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → (𝑧𝑦) = (𝑧𝐶))
3231fveq2d 6383 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (abs‘(𝑧𝑦)) = (abs‘(𝑧𝐶)))
3315, 32breq12d 4824 . . . . . . . . . . . 12 (𝑦 = 𝐶 → (𝑅 ≤ (abs‘(𝑧𝑦)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
3433ralbidv 3133 . . . . . . . . . . 11 (𝑦 = 𝐶 → (∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) ↔ ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
3530, 34rspc 3456 . . . . . . . . . 10 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
369, 25, 35sylc 65 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
3736ad2antrr 717 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
38 fvoveq1 6869 . . . . . . . . . 10 (𝑧 = 𝐵 → (abs‘(𝑧𝐶)) = (abs‘(𝐵𝐶)))
3938breq2d 4823 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4039rspcv 3458 . . . . . . . 8 (𝐵𝐷 → (∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4121, 37, 40sylc 65 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)))
4218ad2antrr 717 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
4342rpred 12075 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ)
44 rlimcld2.3 . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℂ)
4544ad3antrrr 721 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐷 ⊆ ℂ)
4645, 21sseldd 3764 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
477ad2antrr 717 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
4846, 47subcld 10650 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
4948abscld 14474 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
5043, 49lenltd 10441 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)) ↔ ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5141, 50mpbid 223 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
52 id 22 . . . . . . 7 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5352imp 395 . . . . . 6 (((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥) → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
5451, 53nsyl 137 . . . . 5 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
5554nrexdv 3147 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
56 rlimcld2.1 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
57 eqid 2765 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5857, 1dmmptd 6204 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
59 rlimss 14532 . . . . . . . . . . . 12 ((𝑥𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑥𝐴𝐵) ⊆ ℝ)
604, 59syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
6158, 60eqsstr3d 3802 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
62 ressxr 10341 . . . . . . . . . 10 ℝ ⊆ ℝ*
6361, 62syl6ss 3775 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
64 supxrunb1 12356 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6563, 64syl 17 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6656, 65mpbird 248 . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6766adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6867r19.21bi 3079 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐴 𝑟𝑥)
69 r19.29 3219 . . . . . 6 ((∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ ∃𝑥𝐴 𝑟𝑥) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
7069expcom 402 . . . . 5 (∃𝑥𝐴 𝑟𝑥 → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7168, 70syl 17 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7255, 71mtod 189 . . 3 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7372nrexdv 3147 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7419, 73condan 852 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  csb 3693  cdif 3731  wss 3734   class class class wbr 4811  cmpt 4890  dom cdm 5279  cfv 6070  (class class class)co 6846  supcsup 8557  cc 10191  cr 10192  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  cmin 10524  +crp 12033  abscabs 14273  𝑟 crli 14515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-rlim 14519
This theorem is referenced by:  rlimrege0  14609  rlimrecl  14610
  Copyright terms: Public domain W3C validator