MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Visualization version   GIF version

Theorem rlimsqzlem 15595
Description: Lemma for rlimsqz 15596 and rlimsqz2 15597. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m (𝜑𝑀 ∈ ℝ)
rlimsqzlem.e (𝜑𝐸 ∈ ℂ)
rlimsqzlem.1 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqzlem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimsqzlem.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimsqzlem.4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
Assertion
Ref Expression
rlimsqzlem (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqzlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
2 rlimsqzlem.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
32ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀 ∈ ℝ)
42ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
5 elicopnf 13422 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
64, 5syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
76simprbda 500 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑧 ∈ ℝ)
87adantrr 716 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
9 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
119, 10dmmptd 6696 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 rlimss 15446 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstrrd 4022 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
1514adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
1615sselda 3983 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1716adantr 482 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
186simplbda 501 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑀𝑧)
1918adantrr 716 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑧)
20 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧𝑥)
213, 8, 17, 19, 20letrd 11371 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑥)
22 rlimsqzlem.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2322anassrs 469 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2423adantllr 718 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2521, 24syldan 592 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
26 rlimsqzlem.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
27 rlimsqzlem.e . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
2827adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐸 ∈ ℂ)
2926, 28subcld 11571 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐶𝐸) ∈ ℂ)
3029abscld 15383 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3130ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ∈ ℝ)
32 rlimcl 15447 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℂ)
3433adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐷 ∈ ℂ)
3510, 34subcld 11571 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐷) ∈ ℂ)
3635abscld 15383 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3736ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐵𝐷)) ∈ ℝ)
38 rpre 12982 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3938ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑦 ∈ ℝ)
40 lelttr 11304 . . . . . . . . . . 11 (((abs‘(𝐶𝐸)) ∈ ℝ ∧ (abs‘(𝐵𝐷)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4131, 37, 39, 40syl3anc 1372 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4225, 41mpand 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦))
4342expr 458 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4443an32s 651 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4544a2d 29 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4645ralimdva 3168 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4746reximdva 3169 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4847ralimdva 3168 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4910ralrimiva 3147 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
5049, 14, 33, 2rlim3 15442 . . 3 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦)))
5126ralrimiva 3147 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
5251, 14, 27, 2rlim3 15442 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5348, 50, 523imtr4d 294 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐸))
541, 53mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  wss 3949   class class class wbr 5149  cmpt 5232  dom cdm 5677  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  +∞cpnf 11245   < clt 11248  cle 11249  cmin 11444  +crp 12974  [,)cico 13326  abscabs 15181  𝑟 crli 15429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-rlim 15433
This theorem is referenced by:  rlimsqz  15596  rlimsqz2  15597  cxploglim2  26483  logfacrlim  26727  logexprlim  26728
  Copyright terms: Public domain W3C validator