MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Visualization version   GIF version

Theorem rlimsqzlem 15697
Description: Lemma for rlimsqz 15698 and rlimsqz2 15699. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m (𝜑𝑀 ∈ ℝ)
rlimsqzlem.e (𝜑𝐸 ∈ ℂ)
rlimsqzlem.1 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqzlem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimsqzlem.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimsqzlem.4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
Assertion
Ref Expression
rlimsqzlem (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqzlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
2 rlimsqzlem.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
32ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀 ∈ ℝ)
42ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
5 elicopnf 13505 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
64, 5syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
76simprbda 498 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑧 ∈ ℝ)
87adantrr 716 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
9 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
119, 10dmmptd 6725 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 rlimss 15548 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstrrd 4048 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
1514adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
1615sselda 4008 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
186simplbda 499 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑀𝑧)
1918adantrr 716 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑧)
20 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧𝑥)
213, 8, 17, 19, 20letrd 11447 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑥)
22 rlimsqzlem.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2322anassrs 467 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2423adantllr 718 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2521, 24syldan 590 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
26 rlimsqzlem.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
27 rlimsqzlem.e . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐸 ∈ ℂ)
2926, 28subcld 11647 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐶𝐸) ∈ ℂ)
3029abscld 15485 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3130ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ∈ ℝ)
32 rlimcl 15549 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℂ)
3433adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐷 ∈ ℂ)
3510, 34subcld 11647 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐷) ∈ ℂ)
3635abscld 15485 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3736ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐵𝐷)) ∈ ℝ)
38 rpre 13065 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3938ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑦 ∈ ℝ)
40 lelttr 11380 . . . . . . . . . . 11 (((abs‘(𝐶𝐸)) ∈ ℝ ∧ (abs‘(𝐵𝐷)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4131, 37, 39, 40syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4225, 41mpand 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦))
4342expr 456 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4443an32s 651 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4544a2d 29 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4645ralimdva 3173 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4746reximdva 3174 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4847ralimdva 3173 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4910ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
5049, 14, 33, 2rlim3 15544 . . 3 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦)))
5126ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
5251, 14, 27, 2rlim3 15544 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5348, 50, 523imtr4d 294 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐸))
541, 53mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520  +crp 13057  [,)cico 13409  abscabs 15283  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rlim 15535
This theorem is referenced by:  rlimsqz  15698  rlimsqz2  15699  cxploglim2  27040  logfacrlim  27286  logexprlim  27287
  Copyright terms: Public domain W3C validator