MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Visualization version   GIF version

Theorem rlimsqzlem 15594
Description: Lemma for rlimsqz 15595 and rlimsqz2 15596. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m (𝜑𝑀 ∈ ℝ)
rlimsqzlem.e (𝜑𝐸 ∈ ℂ)
rlimsqzlem.1 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqzlem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimsqzlem.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimsqzlem.4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
Assertion
Ref Expression
rlimsqzlem (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqzlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
2 rlimsqzlem.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
32ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀 ∈ ℝ)
42ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
5 elicopnf 13421 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
64, 5syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
76simprbda 499 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑧 ∈ ℝ)
87adantrr 715 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
9 eqid 2732 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
119, 10dmmptd 6695 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 rlimss 15445 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstrrd 4021 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
1514adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
1615sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1716adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
186simplbda 500 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑀𝑧)
1918adantrr 715 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑧)
20 simprr 771 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧𝑥)
213, 8, 17, 19, 20letrd 11370 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑥)
22 rlimsqzlem.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2322anassrs 468 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2423adantllr 717 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2521, 24syldan 591 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
26 rlimsqzlem.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
27 rlimsqzlem.e . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
2827adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐸 ∈ ℂ)
2926, 28subcld 11570 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐶𝐸) ∈ ℂ)
3029abscld 15382 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3130ad4ant13 749 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ∈ ℝ)
32 rlimcl 15446 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℂ)
3433adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐷 ∈ ℂ)
3510, 34subcld 11570 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐷) ∈ ℂ)
3635abscld 15382 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3736ad4ant13 749 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐵𝐷)) ∈ ℝ)
38 rpre 12981 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3938ad3antlr 729 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑦 ∈ ℝ)
40 lelttr 11303 . . . . . . . . . . 11 (((abs‘(𝐶𝐸)) ∈ ℝ ∧ (abs‘(𝐵𝐷)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4131, 37, 39, 40syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4225, 41mpand 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦))
4342expr 457 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4443an32s 650 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4544a2d 29 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4645ralimdva 3167 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4746reximdva 3168 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4847ralimdva 3167 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4910ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
5049, 14, 33, 2rlim3 15441 . . 3 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦)))
5126ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
5251, 14, 27, 2rlim3 15441 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5348, 50, 523imtr4d 293 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐸))
541, 53mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3061  wrex 3070  wss 3948   class class class wbr 5148  cmpt 5231  dom cdm 5676  cfv 6543  (class class class)co 7408  cc 11107  cr 11108  +∞cpnf 11244   < clt 11247  cle 11248  cmin 11443  +crp 12973  [,)cico 13325  abscabs 15180  𝑟 crli 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-ico 13329  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-rlim 15432
This theorem is referenced by:  rlimsqz  15595  rlimsqz2  15596  cxploglim2  26480  logfacrlim  26724  logexprlim  26725
  Copyright terms: Public domain W3C validator