Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   GIF version

Theorem dvradcnv2 44330
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 26364 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 26374 (and shows how to use uzmptshftfval 44329 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv2.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv2.h 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
dvradcnv2.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv2.x (𝜑𝑋 ∈ ℂ)
dvradcnv2.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv2 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑟,𝑋   𝑥,𝑛,𝐴   𝑛,𝑋   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0cn 11144 . . . . 5 0 ∈ ℂ
2 ax-1cn 11104 . . . . 5 1 ∈ ℂ
31, 2subnegi 11479 . . . 4 (0 − -1) = (0 + 1)
4 0p1e1 12281 . . . 4 (0 + 1) = 1
53, 4eqtri 2752 . . 3 (0 − -1) = 1
6 seqeq1 13947 . . 3 ((0 − -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻))
75, 6ax-mp 5 . 2 seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)
8 dvradcnv2.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
9 ovex 7402 . . . . . . . 8 ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V
10 id 22 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1))
11 fveq2 6840 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝐴𝑛) = (𝐴‘(𝑚 − -1)))
1210, 11oveq12d 7387 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1))))
13 oveq1 7376 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1))
1413oveq2d 7385 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1)))
1512, 14oveq12d 7387 . . . . . . . 8 (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))
16 nnuz 12814 . . . . . . . 8 ℕ = (ℤ‘1)
17 nn0uz 12813 . . . . . . . . 9 0 = (ℤ‘0)
18 1pneg1e0 12278 . . . . . . . . . 10 (1 + -1) = 0
1918fveq2i 6843 . . . . . . . . 9 (ℤ‘(1 + -1)) = (ℤ‘0)
2017, 19eqtr4i 2755 . . . . . . . 8 0 = (ℤ‘(1 + -1))
21 1zzd 12542 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2221znegcld 12618 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
238, 9, 15, 16, 20, 21, 22uzmptshftfval 44329 . . . . . . 7 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))))
24 nn0cn 12430 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
26 1cnd 11147 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26subnegd 11518 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1))
2827fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1)))
2927, 28oveq12d 7387 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
3027oveq1d 7384 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = ((𝑚 + 1) − 1))
3125, 26pncand 11512 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚)
3230, 31eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚)
3332oveq2d 7385 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋𝑚))
3429, 33oveq12d 7387 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
3534mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3623, 35eqtrd 2764 . . . . . 6 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3736seqeq3d 13952 . . . . 5 (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))))
38 dvradcnv2.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
39 fveq2 6840 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
40 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4139, 40oveq12d 7387 . . . . . . . . 9 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
4241cbvmptv 5206 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
4342mpteq2i 5198 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
4438, 43eqtri 2752 . . . . . 6 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
45 dvradcnv2.r . . . . . 6 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
46 eqid 2729 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
47 dvradcnv2.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
48 dvradcnv2.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
49 dvradcnv2.l . . . . . 6 (𝜑 → (abs‘𝑋) < 𝑅)
5044, 45, 46, 47, 48, 49dvradcnv 26364 . . . . 5 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))) ∈ dom ⇝ )
5137, 50eqeltrd 2828 . . . 4 (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝ )
52 climdm 15497 . . . 4 (seq0( + , (𝐻 shift -1)) ∈ dom ⇝ ↔ seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
5351, 52sylib 218 . . 3 (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
54 0z 12518 . . . . . . 7 0 ∈ ℤ
55 neg1z 12547 . . . . . . 7 -1 ∈ ℤ
56 nnex 12170 . . . . . . . . . 10 ℕ ∈ V
5756mptex 7179 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V
588, 57eqeltri 2824 . . . . . . . 8 𝐻 ∈ V
5958seqshft 15028 . . . . . . 7 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1))
6054, 55, 59mp2an 692 . . . . . 6 seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)
6160breq1i 5109 . . . . 5 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
62 seqex 13946 . . . . . 6 seq(0 − -1)( + , 𝐻) ∈ V
63 climshft 15519 . . . . . 6 ((-1 ∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))))
6455, 62, 63mp2an 692 . . . . 5 ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
6561, 64bitri 275 . . . 4 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
66 fvex 6853 . . . . 5 ( ⇝ ‘seq0( + , (𝐻 shift -1))) ∈ V
6762, 66breldm 5862 . . . 4 (seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6865, 67sylbi 217 . . 3 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6953, 68syl 17 . 2 (𝜑 → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
707, 69eqeltrrid 2833 1 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11044  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051  *cxr 11185   < clt 11186  cmin 11383  -cneg 11384  cn 12164  0cn0 12420  cz 12507  cuz 12771  seqcseq 13944  cexp 14004   shift cshi 15009  abscabs 15177  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-seq 13945  df-exp 14005  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630
This theorem is referenced by:  binomcxplemcvg  44337
  Copyright terms: Public domain W3C validator