Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   GIF version

Theorem dvradcnv2 41965
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25580 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25589 (and shows how to use uzmptshftfval 41964 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv2.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv2.h 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
dvradcnv2.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv2.x (𝜑𝑋 ∈ ℂ)
dvradcnv2.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv2 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑟,𝑋   𝑥,𝑛,𝐴   𝑛,𝑋   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0cn 10967 . . . . 5 0 ∈ ℂ
2 ax-1cn 10929 . . . . 5 1 ∈ ℂ
31, 2subnegi 11300 . . . 4 (0 − -1) = (0 + 1)
4 0p1e1 12095 . . . 4 (0 + 1) = 1
53, 4eqtri 2766 . . 3 (0 − -1) = 1
6 seqeq1 13724 . . 3 ((0 − -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻))
75, 6ax-mp 5 . 2 seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)
8 dvradcnv2.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
9 ovex 7308 . . . . . . . 8 ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V
10 id 22 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1))
11 fveq2 6774 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝐴𝑛) = (𝐴‘(𝑚 − -1)))
1210, 11oveq12d 7293 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1))))
13 oveq1 7282 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1))
1413oveq2d 7291 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1)))
1512, 14oveq12d 7293 . . . . . . . 8 (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))
16 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
17 nn0uz 12620 . . . . . . . . 9 0 = (ℤ‘0)
18 1pneg1e0 12092 . . . . . . . . . 10 (1 + -1) = 0
1918fveq2i 6777 . . . . . . . . 9 (ℤ‘(1 + -1)) = (ℤ‘0)
2017, 19eqtr4i 2769 . . . . . . . 8 0 = (ℤ‘(1 + -1))
21 1zzd 12351 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2221znegcld 12428 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
238, 9, 15, 16, 20, 21, 22uzmptshftfval 41964 . . . . . . 7 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))))
24 nn0cn 12243 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2524adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
26 1cnd 10970 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26subnegd 11339 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1))
2827fveq2d 6778 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1)))
2927, 28oveq12d 7293 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
3027oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = ((𝑚 + 1) − 1))
3125, 26pncand 11333 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚)
3230, 31eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚)
3332oveq2d 7291 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋𝑚))
3429, 33oveq12d 7293 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
3534mpteq2dva 5174 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3623, 35eqtrd 2778 . . . . . 6 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3736seqeq3d 13729 . . . . 5 (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))))
38 dvradcnv2.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
39 fveq2 6774 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
40 oveq2 7283 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4139, 40oveq12d 7293 . . . . . . . . 9 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
4241cbvmptv 5187 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
4342mpteq2i 5179 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
4438, 43eqtri 2766 . . . . . 6 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
45 dvradcnv2.r . . . . . 6 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
46 eqid 2738 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
47 dvradcnv2.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
48 dvradcnv2.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
49 dvradcnv2.l . . . . . 6 (𝜑 → (abs‘𝑋) < 𝑅)
5044, 45, 46, 47, 48, 49dvradcnv 25580 . . . . 5 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))) ∈ dom ⇝ )
5137, 50eqeltrd 2839 . . . 4 (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝ )
52 climdm 15263 . . . 4 (seq0( + , (𝐻 shift -1)) ∈ dom ⇝ ↔ seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
5351, 52sylib 217 . . 3 (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
54 0z 12330 . . . . . . 7 0 ∈ ℤ
55 neg1z 12356 . . . . . . 7 -1 ∈ ℤ
56 nnex 11979 . . . . . . . . . 10 ℕ ∈ V
5756mptex 7099 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V
588, 57eqeltri 2835 . . . . . . . 8 𝐻 ∈ V
5958seqshft 14796 . . . . . . 7 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1))
6054, 55, 59mp2an 689 . . . . . 6 seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)
6160breq1i 5081 . . . . 5 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
62 seqex 13723 . . . . . 6 seq(0 − -1)( + , 𝐻) ∈ V
63 climshft 15285 . . . . . 6 ((-1 ∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))))
6455, 62, 63mp2an 689 . . . . 5 ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
6561, 64bitri 274 . . . 4 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
66 fvex 6787 . . . . 5 ( ⇝ ‘seq0( + , (𝐻 shift -1))) ∈ V
6762, 66breldm 5817 . . . 4 (seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6865, 67sylbi 216 . . 3 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6953, 68syl 17 . 2 (𝜑 → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
707, 69eqeltrrid 2844 1 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cz 12319  cuz 12582  seqcseq 13721  cexp 13782   shift cshi 14777  abscabs 14945  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  binomcxplemcvg  41972
  Copyright terms: Public domain W3C validator