Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   GIF version

Theorem dvradcnv2 42617
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25780 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25789 (and shows how to use uzmptshftfval 42616 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv2.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv2.h 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
dvradcnv2.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv2.x (𝜑𝑋 ∈ ℂ)
dvradcnv2.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv2 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑟,𝑋   𝑥,𝑛,𝐴   𝑛,𝑋   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0cn 11147 . . . . 5 0 ∈ ℂ
2 ax-1cn 11109 . . . . 5 1 ∈ ℂ
31, 2subnegi 11480 . . . 4 (0 − -1) = (0 + 1)
4 0p1e1 12275 . . . 4 (0 + 1) = 1
53, 4eqtri 2764 . . 3 (0 − -1) = 1
6 seqeq1 13909 . . 3 ((0 − -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻))
75, 6ax-mp 5 . 2 seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)
8 dvradcnv2.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
9 ovex 7390 . . . . . . . 8 ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V
10 id 22 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1))
11 fveq2 6842 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝐴𝑛) = (𝐴‘(𝑚 − -1)))
1210, 11oveq12d 7375 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1))))
13 oveq1 7364 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1))
1413oveq2d 7373 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1)))
1512, 14oveq12d 7375 . . . . . . . 8 (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))
16 nnuz 12806 . . . . . . . 8 ℕ = (ℤ‘1)
17 nn0uz 12805 . . . . . . . . 9 0 = (ℤ‘0)
18 1pneg1e0 12272 . . . . . . . . . 10 (1 + -1) = 0
1918fveq2i 6845 . . . . . . . . 9 (ℤ‘(1 + -1)) = (ℤ‘0)
2017, 19eqtr4i 2767 . . . . . . . 8 0 = (ℤ‘(1 + -1))
21 1zzd 12534 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2221znegcld 12609 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
238, 9, 15, 16, 20, 21, 22uzmptshftfval 42616 . . . . . . 7 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))))
24 nn0cn 12423 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2524adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
26 1cnd 11150 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26subnegd 11519 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1))
2827fveq2d 6846 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1)))
2927, 28oveq12d 7375 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
3027oveq1d 7372 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = ((𝑚 + 1) − 1))
3125, 26pncand 11513 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚)
3230, 31eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚)
3332oveq2d 7373 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋𝑚))
3429, 33oveq12d 7375 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
3534mpteq2dva 5205 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3623, 35eqtrd 2776 . . . . . 6 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3736seqeq3d 13914 . . . . 5 (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))))
38 dvradcnv2.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
39 fveq2 6842 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
40 oveq2 7365 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4139, 40oveq12d 7375 . . . . . . . . 9 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
4241cbvmptv 5218 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
4342mpteq2i 5210 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
4438, 43eqtri 2764 . . . . . 6 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
45 dvradcnv2.r . . . . . 6 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
46 eqid 2736 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
47 dvradcnv2.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
48 dvradcnv2.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
49 dvradcnv2.l . . . . . 6 (𝜑 → (abs‘𝑋) < 𝑅)
5044, 45, 46, 47, 48, 49dvradcnv 25780 . . . . 5 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))) ∈ dom ⇝ )
5137, 50eqeltrd 2838 . . . 4 (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝ )
52 climdm 15436 . . . 4 (seq0( + , (𝐻 shift -1)) ∈ dom ⇝ ↔ seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
5351, 52sylib 217 . . 3 (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
54 0z 12510 . . . . . . 7 0 ∈ ℤ
55 neg1z 12539 . . . . . . 7 -1 ∈ ℤ
56 nnex 12159 . . . . . . . . . 10 ℕ ∈ V
5756mptex 7173 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V
588, 57eqeltri 2834 . . . . . . . 8 𝐻 ∈ V
5958seqshft 14970 . . . . . . 7 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1))
6054, 55, 59mp2an 690 . . . . . 6 seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)
6160breq1i 5112 . . . . 5 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
62 seqex 13908 . . . . . 6 seq(0 − -1)( + , 𝐻) ∈ V
63 climshft 15458 . . . . . 6 ((-1 ∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))))
6455, 62, 63mp2an 690 . . . . 5 ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
6561, 64bitri 274 . . . 4 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
66 fvex 6855 . . . . 5 ( ⇝ ‘seq0( + , (𝐻 shift -1))) ∈ V
6762, 66breldm 5864 . . . 4 (seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6865, 67sylbi 216 . . 3 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6953, 68syl 17 . 2 (𝜑 → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
707, 69eqeltrrid 2843 1 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cmin 11385  -cneg 11386  cn 12153  0cn0 12413  cz 12499  cuz 12763  seqcseq 13906  cexp 13967   shift cshi 14951  abscabs 15119  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571
This theorem is referenced by:  binomcxplemcvg  42624
  Copyright terms: Public domain W3C validator