Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   GIF version

Theorem dvradcnv2 40101
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 24712 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 24721 (and shows how to use uzmptshftfval 40100 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv2.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv2.h 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
dvradcnv2.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv2.x (𝜑𝑋 ∈ ℂ)
dvradcnv2.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv2 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑟,𝑋   𝑥,𝑛,𝐴   𝑛,𝑋   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0cn 10431 . . . . 5 0 ∈ ℂ
2 ax-1cn 10393 . . . . 5 1 ∈ ℂ
31, 2subnegi 10766 . . . 4 (0 − -1) = (0 + 1)
4 0p1e1 11569 . . . 4 (0 + 1) = 1
53, 4eqtri 2802 . . 3 (0 − -1) = 1
6 seqeq1 13187 . . 3 ((0 − -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻))
75, 6ax-mp 5 . 2 seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)
8 dvradcnv2.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
9 ovex 7008 . . . . . . . 8 ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V
10 id 22 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1))
11 fveq2 6499 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝐴𝑛) = (𝐴‘(𝑚 − -1)))
1210, 11oveq12d 6994 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1))))
13 oveq1 6983 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1))
1413oveq2d 6992 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1)))
1512, 14oveq12d 6994 . . . . . . . 8 (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))
16 nnuz 12095 . . . . . . . 8 ℕ = (ℤ‘1)
17 nn0uz 12094 . . . . . . . . 9 0 = (ℤ‘0)
18 1pneg1e0 11566 . . . . . . . . . 10 (1 + -1) = 0
1918fveq2i 6502 . . . . . . . . 9 (ℤ‘(1 + -1)) = (ℤ‘0)
2017, 19eqtr4i 2805 . . . . . . . 8 0 = (ℤ‘(1 + -1))
21 1zzd 11826 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2221znegcld 11902 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
238, 9, 15, 16, 20, 21, 22uzmptshftfval 40100 . . . . . . 7 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))))
24 nn0cn 11718 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2524adantl 474 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
26 1cnd 10434 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26subnegd 10805 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1))
2827fveq2d 6503 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1)))
2927, 28oveq12d 6994 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
3027oveq1d 6991 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = ((𝑚 + 1) − 1))
3125, 26pncand 10799 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚)
3230, 31eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚)
3332oveq2d 6992 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋𝑚))
3429, 33oveq12d 6994 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
3534mpteq2dva 5022 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3623, 35eqtrd 2814 . . . . . 6 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3736seqeq3d 13192 . . . . 5 (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))))
38 dvradcnv2.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
39 fveq2 6499 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
40 oveq2 6984 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4139, 40oveq12d 6994 . . . . . . . . 9 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
4241cbvmptv 5028 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
4342mpteq2i 5019 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
4438, 43eqtri 2802 . . . . . 6 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
45 dvradcnv2.r . . . . . 6 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
46 eqid 2778 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
47 dvradcnv2.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
48 dvradcnv2.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
49 dvradcnv2.l . . . . . 6 (𝜑 → (abs‘𝑋) < 𝑅)
5044, 45, 46, 47, 48, 49dvradcnv 24712 . . . . 5 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))) ∈ dom ⇝ )
5137, 50eqeltrd 2866 . . . 4 (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝ )
52 climdm 14772 . . . 4 (seq0( + , (𝐻 shift -1)) ∈ dom ⇝ ↔ seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
5351, 52sylib 210 . . 3 (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
54 0z 11804 . . . . . . 7 0 ∈ ℤ
55 neg1z 11831 . . . . . . 7 -1 ∈ ℤ
56 nnex 11446 . . . . . . . . . 10 ℕ ∈ V
5756mptex 6812 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V
588, 57eqeltri 2862 . . . . . . . 8 𝐻 ∈ V
5958seqshft 14305 . . . . . . 7 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1))
6054, 55, 59mp2an 679 . . . . . 6 seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)
6160breq1i 4936 . . . . 5 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
62 seqex 13186 . . . . . 6 seq(0 − -1)( + , 𝐻) ∈ V
63 climshft 14794 . . . . . 6 ((-1 ∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))))
6455, 62, 63mp2an 679 . . . . 5 ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
6561, 64bitri 267 . . . 4 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
66 fvex 6512 . . . . 5 ( ⇝ ‘seq0( + , (𝐻 shift -1))) ∈ V
6762, 66breldm 5627 . . . 4 (seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6865, 67sylbi 209 . . 3 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6953, 68syl 17 . 2 (𝜑 → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
707, 69syl5eqelr 2871 1 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  {crab 3092  Vcvv 3415   class class class wbr 4929  cmpt 5008  dom cdm 5407  wf 6184  cfv 6188  (class class class)co 6976  supcsup 8699  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340  *cxr 10473   < clt 10474  cmin 10670  -cneg 10671  cn 11439  0cn0 11707  cz 11793  cuz 12058  seqcseq 13184  cexp 13244   shift cshi 14286  abscabs 14454  cli 14702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904
This theorem is referenced by:  binomcxplemcvg  40108
  Copyright terms: Public domain W3C validator