| Step | Hyp | Ref
| Expression |
| 1 | | 0cn 11253 |
. . . . 5
⊢ 0 ∈
ℂ |
| 2 | | ax-1cn 11213 |
. . . . 5
⊢ 1 ∈
ℂ |
| 3 | 1, 2 | subnegi 11588 |
. . . 4
⊢ (0
− -1) = (0 + 1) |
| 4 | | 0p1e1 12388 |
. . . 4
⊢ (0 + 1) =
1 |
| 5 | 3, 4 | eqtri 2765 |
. . 3
⊢ (0
− -1) = 1 |
| 6 | | seqeq1 14045 |
. . 3
⊢ ((0
− -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)) |
| 7 | 5, 6 | ax-mp 5 |
. 2
⊢ seq(0
− -1)( + , 𝐻) = seq1(
+ , 𝐻) |
| 8 | | dvradcnv2.h |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) |
| 9 | | ovex 7464 |
. . . . . . . 8
⊢ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V |
| 10 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1)) |
| 11 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 − -1) → (𝐴‘𝑛) = (𝐴‘(𝑚 − -1))) |
| 12 | 10, 11 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴‘𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1)))) |
| 13 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1)) |
| 14 | 13 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1))) |
| 15 | 12, 14 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) |
| 16 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 17 | | nn0uz 12920 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 18 | | 1pneg1e0 12385 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
| 19 | 18 | fveq2i 6909 |
. . . . . . . . 9
⊢
(ℤ≥‘(1 + -1)) =
(ℤ≥‘0) |
| 20 | 17, 19 | eqtr4i 2768 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘(1 +
-1)) |
| 21 | | 1zzd 12648 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 22 | 21 | znegcld 12724 |
. . . . . . . 8
⊢ (𝜑 → -1 ∈
ℤ) |
| 23 | 8, 9, 15, 16, 20, 21, 22 | uzmptshftfval 44365 |
. . . . . . 7
⊢ (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))) |
| 24 | | nn0cn 12536 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℂ) |
| 26 | | 1cnd 11256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 1 ∈
ℂ) |
| 27 | 25, 26 | subnegd 11627 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1)) |
| 28 | 27 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1))) |
| 29 | 27, 28 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 30 | 27 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) =
((𝑚 + 1) −
1)) |
| 31 | 25, 26 | pncand 11621 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚) |
| 32 | 30, 31 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚) |
| 33 | 32 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋↑𝑚)) |
| 34 | 29, 33 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋↑𝑚))) |
| 35 | 34 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0
↦ (((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))) · (𝑋↑𝑚)))) |
| 36 | 23, 35 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋↑𝑚)))) |
| 37 | 36 | seqeq3d 14050 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0
↦ (((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))) · (𝑋↑𝑚))))) |
| 38 | | dvradcnv2.g |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 39 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) |
| 40 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) |
| 41 | 39, 40 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 42 | 41 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 43 | 42 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) |
| 44 | 38, 43 | eqtri 2765 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚)))) |
| 45 | | dvradcnv2.r |
. . . . . 6
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 46 | | eqid 2737 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
↦ (((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))) · (𝑋↑𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋↑𝑚))) |
| 47 | | dvradcnv2.a |
. . . . . 6
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 48 | | dvradcnv2.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 49 | | dvradcnv2.l |
. . . . . 6
⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
| 50 | 44, 45, 46, 47, 48, 49 | dvradcnv 26464 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑚 ∈ ℕ0
↦ (((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))) · (𝑋↑𝑚)))) ∈ dom ⇝ ) |
| 51 | 37, 50 | eqeltrd 2841 |
. . . 4
⊢ (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝
) |
| 52 | | climdm 15590 |
. . . 4
⊢ (seq0( +
, (𝐻 shift -1)) ∈ dom
⇝ ↔ seq0( + , (𝐻
shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))) |
| 53 | 51, 52 | sylib 218 |
. . 3
⊢ (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝
‘seq0( + , (𝐻 shift
-1)))) |
| 54 | | 0z 12624 |
. . . . . . 7
⊢ 0 ∈
ℤ |
| 55 | | neg1z 12653 |
. . . . . . 7
⊢ -1 ∈
ℤ |
| 56 | | nnex 12272 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
| 57 | 56 | mptex 7243 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V |
| 58 | 8, 57 | eqeltri 2837 |
. . . . . . . 8
⊢ 𝐻 ∈ V |
| 59 | 58 | seqshft 15124 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)) |
| 60 | 54, 55, 59 | mp2an 692 |
. . . . . 6
⊢ seq0( + ,
(𝐻 shift -1)) = (seq(0
− -1)( + , 𝐻) shift
-1) |
| 61 | 60 | breq1i 5150 |
. . . . 5
⊢ (seq0( +
, (𝐻 shift -1)) ⇝ (
⇝ ‘seq0( + , (𝐻
shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( +
, (𝐻 shift
-1)))) |
| 62 | | seqex 14044 |
. . . . . 6
⊢ seq(0
− -1)( + , 𝐻) ∈
V |
| 63 | | climshft 15612 |
. . . . . 6
⊢ ((-1
∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + ,
𝐻) shift -1) ⇝ (
⇝ ‘seq0( + , (𝐻
shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))) |
| 64 | 55, 62, 63 | mp2an 692 |
. . . . 5
⊢ ((seq(0
− -1)( + , 𝐻) shift
-1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + ,
𝐻) ⇝ ( ⇝
‘seq0( + , (𝐻 shift
-1)))) |
| 65 | 61, 64 | bitri 275 |
. . . 4
⊢ (seq0( +
, (𝐻 shift -1)) ⇝ (
⇝ ‘seq0( + , (𝐻
shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))) |
| 66 | | fvex 6919 |
. . . . 5
⊢ ( ⇝
‘seq0( + , (𝐻 shift
-1))) ∈ V |
| 67 | 62, 66 | breldm 5919 |
. . . 4
⊢ (seq(0
− -1)( + , 𝐻) ⇝
( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + ,
𝐻) ∈ dom ⇝
) |
| 68 | 65, 67 | sylbi 217 |
. . 3
⊢ (seq0( +
, (𝐻 shift -1)) ⇝ (
⇝ ‘seq0( + , (𝐻
shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ ) |
| 69 | 53, 68 | syl 17 |
. 2
⊢ (𝜑 → seq(0 − -1)( + ,
𝐻) ∈ dom ⇝
) |
| 70 | 7, 69 | eqeltrrid 2846 |
1
⊢ (𝜑 → seq1( + , 𝐻) ∈ dom ⇝
) |