Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   GIF version

Theorem dvradcnv2 41854
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25485 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25494 (and shows how to use uzmptshftfval 41853 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv2.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv2.h 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
dvradcnv2.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv2.x (𝜑𝑋 ∈ ℂ)
dvradcnv2.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv2 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑟,𝑋   𝑥,𝑛,𝐴   𝑛,𝑋   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0cn 10898 . . . . 5 0 ∈ ℂ
2 ax-1cn 10860 . . . . 5 1 ∈ ℂ
31, 2subnegi 11230 . . . 4 (0 − -1) = (0 + 1)
4 0p1e1 12025 . . . 4 (0 + 1) = 1
53, 4eqtri 2766 . . 3 (0 − -1) = 1
6 seqeq1 13652 . . 3 ((0 − -1) = 1 → seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻))
75, 6ax-mp 5 . 2 seq(0 − -1)( + , 𝐻) = seq1( + , 𝐻)
8 dvradcnv2.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))))
9 ovex 7288 . . . . . . . 8 ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) ∈ V
10 id 22 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → 𝑛 = (𝑚 − -1))
11 fveq2 6756 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝐴𝑛) = (𝐴‘(𝑚 − -1)))
1210, 11oveq12d 7273 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑛 · (𝐴𝑛)) = ((𝑚 − -1) · (𝐴‘(𝑚 − -1))))
13 oveq1 7262 . . . . . . . . . 10 (𝑛 = (𝑚 − -1) → (𝑛 − 1) = ((𝑚 − -1) − 1))
1413oveq2d 7271 . . . . . . . . 9 (𝑛 = (𝑚 − -1) → (𝑋↑(𝑛 − 1)) = (𝑋↑((𝑚 − -1) − 1)))
1512, 14oveq12d 7273 . . . . . . . 8 (𝑛 = (𝑚 − -1) → ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1))) = (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))))
16 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
17 nn0uz 12549 . . . . . . . . 9 0 = (ℤ‘0)
18 1pneg1e0 12022 . . . . . . . . . 10 (1 + -1) = 0
1918fveq2i 6759 . . . . . . . . 9 (ℤ‘(1 + -1)) = (ℤ‘0)
2017, 19eqtr4i 2769 . . . . . . . 8 0 = (ℤ‘(1 + -1))
21 1zzd 12281 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2221znegcld 12357 . . . . . . . 8 (𝜑 → -1 ∈ ℤ)
238, 9, 15, 16, 20, 21, 22uzmptshftfval 41853 . . . . . . 7 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))))
24 nn0cn 12173 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
26 1cnd 10901 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26subnegd 11269 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 − -1) = (𝑚 + 1))
2827fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐴‘(𝑚 − -1)) = (𝐴‘(𝑚 + 1)))
2927, 28oveq12d 7273 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) · (𝐴‘(𝑚 − -1))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
3027oveq1d 7270 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = ((𝑚 + 1) − 1))
3125, 26pncand 11263 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) − 1) = 𝑚)
3230, 31eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 − -1) − 1) = 𝑚)
3332oveq2d 7271 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋↑((𝑚 − -1) − 1)) = (𝑋𝑚))
3429, 33oveq12d 7273 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
3534mpteq2dva 5170 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ (((𝑚 − -1) · (𝐴‘(𝑚 − -1))) · (𝑋↑((𝑚 − -1) − 1)))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3623, 35eqtrd 2778 . . . . . 6 (𝜑 → (𝐻 shift -1) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))))
3736seqeq3d 13657 . . . . 5 (𝜑 → seq0( + , (𝐻 shift -1)) = seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))))
38 dvradcnv2.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
39 fveq2 6756 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
40 oveq2 7263 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4139, 40oveq12d 7273 . . . . . . . . 9 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
4241cbvmptv 5183 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
4342mpteq2i 5175 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
4438, 43eqtri 2766 . . . . . 6 𝐺 = (𝑥 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))))
45 dvradcnv2.r . . . . . 6 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
46 eqid 2738 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚))) = (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))
47 dvradcnv2.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
48 dvradcnv2.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
49 dvradcnv2.l . . . . . 6 (𝜑 → (abs‘𝑋) < 𝑅)
5044, 45, 46, 47, 48, 49dvradcnv 25485 . . . . 5 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑋𝑚)))) ∈ dom ⇝ )
5137, 50eqeltrd 2839 . . . 4 (𝜑 → seq0( + , (𝐻 shift -1)) ∈ dom ⇝ )
52 climdm 15191 . . . 4 (seq0( + , (𝐻 shift -1)) ∈ dom ⇝ ↔ seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
5351, 52sylib 217 . . 3 (𝜑 → seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
54 0z 12260 . . . . . . 7 0 ∈ ℤ
55 neg1z 12286 . . . . . . 7 -1 ∈ ℤ
56 nnex 11909 . . . . . . . . . 10 ℕ ∈ V
5756mptex 7081 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴𝑛)) · (𝑋↑(𝑛 − 1)))) ∈ V
588, 57eqeltri 2835 . . . . . . . 8 𝐻 ∈ V
5958seqshft 14724 . . . . . . 7 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1))
6054, 55, 59mp2an 688 . . . . . 6 seq0( + , (𝐻 shift -1)) = (seq(0 − -1)( + , 𝐻) shift -1)
6160breq1i 5077 . . . . 5 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ (seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
62 seqex 13651 . . . . . 6 seq(0 − -1)( + , 𝐻) ∈ V
63 climshft 15213 . . . . . 6 ((-1 ∈ ℤ ∧ seq(0 − -1)( + , 𝐻) ∈ V) → ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1)))))
6455, 62, 63mp2an 688 . . . . 5 ((seq(0 − -1)( + , 𝐻) shift -1) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
6561, 64bitri 274 . . . 4 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) ↔ seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))))
66 fvex 6769 . . . . 5 ( ⇝ ‘seq0( + , (𝐻 shift -1))) ∈ V
6762, 66breldm 5806 . . . 4 (seq(0 − -1)( + , 𝐻) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6865, 67sylbi 216 . . 3 (seq0( + , (𝐻 shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝐻 shift -1))) → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
6953, 68syl 17 . 2 (𝜑 → seq(0 − -1)( + , 𝐻) ∈ dom ⇝ )
707, 69eqeltrrid 2844 1 (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  cuz 12511  seqcseq 13649  cexp 13710   shift cshi 14705  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  binomcxplemcvg  41861
  Copyright terms: Public domain W3C validator