MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmullem Structured version   Visualization version   GIF version

Theorem ntrivcvgmullem 15541
Description: Lemma for ntrivcvgmul 15542. (Contributed by Scott Fenton, 19-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmullem.1 𝑍 = (ℤ𝑀)
ntrivcvgmullem.2 (𝜑𝑁𝑍)
ntrivcvgmullem.3 (𝜑𝑃𝑍)
ntrivcvgmullem.4 (𝜑𝑋 ≠ 0)
ntrivcvgmullem.5 (𝜑𝑌 ≠ 0)
ntrivcvgmullem.6 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
ntrivcvgmullem.7 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
ntrivcvgmullem.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmullem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmullem.a (𝜑𝑁𝑃)
ntrivcvgmullem.b ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmullem (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑤,𝐹   𝐻,𝑞,𝑤   𝑃,𝑞,𝑤   𝑤,𝑌   𝑍,𝑞   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑃,𝑘   𝑘,𝑍   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑤,𝑞)   𝑀(𝑤,𝑘,𝑞)   𝑁(𝑤,𝑞)   𝑋(𝑤,𝑘,𝑞)   𝑌(𝑘,𝑞)   𝑍(𝑤)

Proof of Theorem ntrivcvgmullem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ntrivcvgmullem.3 . 2 (𝜑𝑃𝑍)
2 eqid 2738 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3 ntrivcvgmullem.a . . . . . . . 8 (𝜑𝑁𝑃)
4 ntrivcvgmullem.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 uzssz 12532 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3951 . . . . . . . . . 10 𝑍 ⊆ ℤ
7 ntrivcvgmullem.2 . . . . . . . . . 10 (𝜑𝑁𝑍)
86, 7sselid 3915 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
96, 1sselid 3915 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
10 eluz 12525 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
118, 9, 10syl2anc 583 . . . . . . . 8 (𝜑 → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
123, 11mpbird 256 . . . . . . 7 (𝜑𝑃 ∈ (ℤ𝑁))
13 ntrivcvgmullem.6 . . . . . . 7 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
14 ntrivcvgmullem.4 . . . . . . 7 (𝜑𝑋 ≠ 0)
154uztrn2 12530 . . . . . . . . 9 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
167, 15sylan 579 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
17 ntrivcvgmullem.8 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1816, 17syldan 590 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
192, 12, 13, 14, 18ntrivcvgtail 15540 . . . . . 6 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0 ∧ seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹))))
2019simprd 495 . . . . 5 (𝜑 → seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)))
21 climcl 15136 . . . . 5 (seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)) → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
2220, 21syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
23 ntrivcvgmullem.7 . . . . 5 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
24 climcl 15136 . . . . 5 (seq𝑃( · , 𝐺) ⇝ 𝑌𝑌 ∈ ℂ)
2523, 24syl 17 . . . 4 (𝜑𝑌 ∈ ℂ)
2619simpld 494 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0)
27 ntrivcvgmullem.5 . . . 4 (𝜑𝑌 ≠ 0)
2822, 25, 26, 27mulne0d 11557 . . 3 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0)
29 eqid 2738 . . . 4 (ℤ𝑃) = (ℤ𝑃)
30 seqex 13651 . . . . 5 seq𝑃( · , 𝐻) ∈ V
3130a1i 11 . . . 4 (𝜑 → seq𝑃( · , 𝐻) ∈ V)
324uztrn2 12530 . . . . . . . 8 ((𝑃𝑍𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
331, 32sylan 579 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
3433, 17syldan 590 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐹𝑘) ∈ ℂ)
3529, 9, 34prodf 15527 . . . . 5 (𝜑 → seq𝑃( · , 𝐹):(ℤ𝑃)⟶ℂ)
3635ffvelrnda 6943 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐹)‘𝑗) ∈ ℂ)
37 ntrivcvgmullem.9 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3833, 37syldan 590 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐺𝑘) ∈ ℂ)
3929, 9, 38prodf 15527 . . . . 5 (𝜑 → seq𝑃( · , 𝐺):(ℤ𝑃)⟶ℂ)
4039ffvelrnda 6943 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐺)‘𝑗) ∈ ℂ)
41 simpr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑗 ∈ (ℤ𝑃))
42 simpll 763 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝜑)
431adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑃𝑍)
44 elfzuz 13181 . . . . . . 7 (𝑘 ∈ (𝑃...𝑗) → 𝑘 ∈ (ℤ𝑃))
4543, 44, 32syl2an 595 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝑘𝑍)
4642, 45, 17syl2anc 583 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐹𝑘) ∈ ℂ)
4742, 45, 37syl2anc 583 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐺𝑘) ∈ ℂ)
48 ntrivcvgmullem.b . . . . . 6 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4942, 45, 48syl2anc 583 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5041, 46, 47, 49prodfmul 15530 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐻)‘𝑗) = ((seq𝑃( · , 𝐹)‘𝑗) · (seq𝑃( · , 𝐺)‘𝑗)))
5129, 9, 20, 31, 23, 36, 40, 50climmul 15270 . . 3 (𝜑 → seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))
52 ovex 7288 . . . 4 (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ∈ V
53 neeq1 3005 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (𝑤 ≠ 0 ↔ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0))
54 breq2 5074 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (seq𝑃( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)))
5553, 54anbi12d 630 . . . 4 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → ((𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤) ↔ ((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))))
5652, 55spcev 3535 . . 3 (((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
5728, 51, 56syl2anc 583 . 2 (𝜑 → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
58 seqeq1 13652 . . . . . 6 (𝑞 = 𝑃 → seq𝑞( · , 𝐻) = seq𝑃( · , 𝐻))
5958breq1d 5080 . . . . 5 (𝑞 = 𝑃 → (seq𝑞( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ 𝑤))
6059anbi2d 628 . . . 4 (𝑞 = 𝑃 → ((𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6160exbidv 1925 . . 3 (𝑞 = 𝑃 → (∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6261rspcev 3552 . 2 ((𝑃𝑍 ∧ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
631, 57, 62syl2anc 583 1 (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  cle 10941  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125
This theorem is referenced by:  ntrivcvgmul  15542
  Copyright terms: Public domain W3C validator