MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmullem Structured version   Visualization version   GIF version

Theorem ntrivcvgmullem 15249
Description: Lemma for ntrivcvgmul 15250. (Contributed by Scott Fenton, 19-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmullem.1 𝑍 = (ℤ𝑀)
ntrivcvgmullem.2 (𝜑𝑁𝑍)
ntrivcvgmullem.3 (𝜑𝑃𝑍)
ntrivcvgmullem.4 (𝜑𝑋 ≠ 0)
ntrivcvgmullem.5 (𝜑𝑌 ≠ 0)
ntrivcvgmullem.6 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
ntrivcvgmullem.7 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
ntrivcvgmullem.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmullem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmullem.a (𝜑𝑁𝑃)
ntrivcvgmullem.b ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmullem (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑤,𝐹   𝐻,𝑞,𝑤   𝑃,𝑞,𝑤   𝑤,𝑌   𝑍,𝑞   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑃,𝑘   𝑘,𝑍   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑤,𝑞)   𝑀(𝑤,𝑘,𝑞)   𝑁(𝑤,𝑞)   𝑋(𝑤,𝑘,𝑞)   𝑌(𝑘,𝑞)   𝑍(𝑤)

Proof of Theorem ntrivcvgmullem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ntrivcvgmullem.3 . 2 (𝜑𝑃𝑍)
2 eqid 2819 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3 ntrivcvgmullem.a . . . . . . . 8 (𝜑𝑁𝑃)
4 ntrivcvgmullem.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 uzssz 12256 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3999 . . . . . . . . . 10 𝑍 ⊆ ℤ
7 ntrivcvgmullem.2 . . . . . . . . . 10 (𝜑𝑁𝑍)
86, 7sseldi 3963 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
96, 1sseldi 3963 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
10 eluz 12249 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
118, 9, 10syl2anc 586 . . . . . . . 8 (𝜑 → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
123, 11mpbird 259 . . . . . . 7 (𝜑𝑃 ∈ (ℤ𝑁))
13 ntrivcvgmullem.6 . . . . . . 7 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
14 ntrivcvgmullem.4 . . . . . . 7 (𝜑𝑋 ≠ 0)
154uztrn2 12254 . . . . . . . . 9 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
167, 15sylan 582 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
17 ntrivcvgmullem.8 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1816, 17syldan 593 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
192, 12, 13, 14, 18ntrivcvgtail 15248 . . . . . 6 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0 ∧ seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹))))
2019simprd 498 . . . . 5 (𝜑 → seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)))
21 climcl 14848 . . . . 5 (seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)) → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
2220, 21syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
23 ntrivcvgmullem.7 . . . . 5 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
24 climcl 14848 . . . . 5 (seq𝑃( · , 𝐺) ⇝ 𝑌𝑌 ∈ ℂ)
2523, 24syl 17 . . . 4 (𝜑𝑌 ∈ ℂ)
2619simpld 497 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0)
27 ntrivcvgmullem.5 . . . 4 (𝜑𝑌 ≠ 0)
2822, 25, 26, 27mulne0d 11284 . . 3 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0)
29 eqid 2819 . . . 4 (ℤ𝑃) = (ℤ𝑃)
30 seqex 13363 . . . . 5 seq𝑃( · , 𝐻) ∈ V
3130a1i 11 . . . 4 (𝜑 → seq𝑃( · , 𝐻) ∈ V)
324uztrn2 12254 . . . . . . . 8 ((𝑃𝑍𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
331, 32sylan 582 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
3433, 17syldan 593 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐹𝑘) ∈ ℂ)
3529, 9, 34prodf 15235 . . . . 5 (𝜑 → seq𝑃( · , 𝐹):(ℤ𝑃)⟶ℂ)
3635ffvelrnda 6844 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐹)‘𝑗) ∈ ℂ)
37 ntrivcvgmullem.9 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3833, 37syldan 593 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐺𝑘) ∈ ℂ)
3929, 9, 38prodf 15235 . . . . 5 (𝜑 → seq𝑃( · , 𝐺):(ℤ𝑃)⟶ℂ)
4039ffvelrnda 6844 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐺)‘𝑗) ∈ ℂ)
41 simpr 487 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑗 ∈ (ℤ𝑃))
42 simpll 765 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝜑)
431adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑃𝑍)
44 elfzuz 12896 . . . . . . 7 (𝑘 ∈ (𝑃...𝑗) → 𝑘 ∈ (ℤ𝑃))
4543, 44, 32syl2an 597 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝑘𝑍)
4642, 45, 17syl2anc 586 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐹𝑘) ∈ ℂ)
4742, 45, 37syl2anc 586 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐺𝑘) ∈ ℂ)
48 ntrivcvgmullem.b . . . . . 6 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4942, 45, 48syl2anc 586 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5041, 46, 47, 49prodfmul 15238 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐻)‘𝑗) = ((seq𝑃( · , 𝐹)‘𝑗) · (seq𝑃( · , 𝐺)‘𝑗)))
5129, 9, 20, 31, 23, 36, 40, 50climmul 14981 . . 3 (𝜑 → seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))
52 ovex 7181 . . . 4 (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ∈ V
53 neeq1 3076 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (𝑤 ≠ 0 ↔ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0))
54 breq2 5061 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (seq𝑃( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)))
5553, 54anbi12d 632 . . . 4 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → ((𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤) ↔ ((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))))
5652, 55spcev 3605 . . 3 (((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
5728, 51, 56syl2anc 586 . 2 (𝜑 → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
58 seqeq1 13364 . . . . . 6 (𝑞 = 𝑃 → seq𝑞( · , 𝐻) = seq𝑃( · , 𝐻))
5958breq1d 5067 . . . . 5 (𝑞 = 𝑃 → (seq𝑞( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ 𝑤))
6059anbi2d 630 . . . 4 (𝑞 = 𝑃 → ((𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6160exbidv 1915 . . 3 (𝑞 = 𝑃 → (∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6261rspcev 3621 . 2 ((𝑃𝑍 ∧ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
631, 57, 62syl2anc 586 1 (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wex 1773  wcel 2107  wne 3014  wrex 3137  Vcvv 3493   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529   · cmul 10534  cle 10668  cz 11973  cuz 12235  ...cfz 12884  seqcseq 13361  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  ntrivcvgmul  15250
  Copyright terms: Public domain W3C validator