| Step | Hyp | Ref
| Expression |
| 1 | | ntrivcvgmullem.3 |
. 2
⊢ (𝜑 → 𝑃 ∈ 𝑍) |
| 2 | | eqid 2737 |
. . . . . . 7
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 3 | | ntrivcvgmullem.a |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ≤ 𝑃) |
| 4 | | ntrivcvgmullem.1 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | uzssz 12899 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 6 | 4, 5 | eqsstri 4030 |
. . . . . . . . . 10
⊢ 𝑍 ⊆
ℤ |
| 7 | | ntrivcvgmullem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| 8 | 6, 7 | sselid 3981 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | 6, 1 | sselid 3981 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 10 | | eluz 12892 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑃)) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑃)) |
| 12 | 3, 11 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
| 13 | | ntrivcvgmullem.6 |
. . . . . . 7
⊢ (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋) |
| 14 | | ntrivcvgmullem.4 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≠ 0) |
| 15 | 4 | uztrn2 12897 |
. . . . . . . . 9
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 16 | 7, 15 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 17 | | ntrivcvgmullem.8 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 18 | 16, 17 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
| 19 | 2, 12, 13, 14, 18 | ntrivcvgtail 15936 |
. . . . . 6
⊢ (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0 ∧ seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)))) |
| 20 | 19 | simprd 495 |
. . . . 5
⊢ (𝜑 → seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹))) |
| 21 | | climcl 15535 |
. . . . 5
⊢ (seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)) → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ) |
| 22 | 20, 21 | syl 17 |
. . . 4
⊢ (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ) |
| 23 | | ntrivcvgmullem.7 |
. . . . 5
⊢ (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌) |
| 24 | | climcl 15535 |
. . . . 5
⊢ (seq𝑃( · , 𝐺) ⇝ 𝑌 → 𝑌 ∈ ℂ) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 26 | 19 | simpld 494 |
. . . 4
⊢ (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0) |
| 27 | | ntrivcvgmullem.5 |
. . . 4
⊢ (𝜑 → 𝑌 ≠ 0) |
| 28 | 22, 25, 26, 27 | mulne0d 11915 |
. . 3
⊢ (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0) |
| 29 | | eqid 2737 |
. . . 4
⊢
(ℤ≥‘𝑃) = (ℤ≥‘𝑃) |
| 30 | | seqex 14044 |
. . . . 5
⊢ seq𝑃( · , 𝐻) ∈ V |
| 31 | 30 | a1i 11 |
. . . 4
⊢ (𝜑 → seq𝑃( · , 𝐻) ∈ V) |
| 32 | 4 | uztrn2 12897 |
. . . . . . . 8
⊢ ((𝑃 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑃)) → 𝑘 ∈ 𝑍) |
| 33 | 1, 32 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑃)) → 𝑘 ∈ 𝑍) |
| 34 | 33, 17 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑃)) → (𝐹‘𝑘) ∈ ℂ) |
| 35 | 29, 9, 34 | prodf 15923 |
. . . . 5
⊢ (𝜑 → seq𝑃( · , 𝐹):(ℤ≥‘𝑃)⟶ℂ) |
| 36 | 35 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) → (seq𝑃( · , 𝐹)‘𝑗) ∈ ℂ) |
| 37 | | ntrivcvgmullem.9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 38 | 33, 37 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑃)) → (𝐺‘𝑘) ∈ ℂ) |
| 39 | 29, 9, 38 | prodf 15923 |
. . . . 5
⊢ (𝜑 → seq𝑃( · , 𝐺):(ℤ≥‘𝑃)⟶ℂ) |
| 40 | 39 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) → (seq𝑃( · , 𝐺)‘𝑗) ∈ ℂ) |
| 41 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) → 𝑗 ∈ (ℤ≥‘𝑃)) |
| 42 | | simpll 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝜑) |
| 43 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) → 𝑃 ∈ 𝑍) |
| 44 | | elfzuz 13560 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑃...𝑗) → 𝑘 ∈ (ℤ≥‘𝑃)) |
| 45 | 43, 44, 32 | syl2an 596 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝑘 ∈ 𝑍) |
| 46 | 42, 45, 17 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
| 47 | 42, 45, 37 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐺‘𝑘) ∈ ℂ) |
| 48 | | ntrivcvgmullem.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
| 49 | 42, 45, 48 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
| 50 | 41, 46, 47, 49 | prodfmul 15926 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑃)) → (seq𝑃( · , 𝐻)‘𝑗) = ((seq𝑃( · , 𝐹)‘𝑗) · (seq𝑃( · , 𝐺)‘𝑗))) |
| 51 | 29, 9, 20, 31, 23, 36, 40, 50 | climmul 15669 |
. . 3
⊢ (𝜑 → seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) |
| 52 | | ovex 7464 |
. . . 4
⊢ ((
⇝ ‘seq𝑃(
· , 𝐹)) ·
𝑌) ∈
V |
| 53 | | neeq1 3003 |
. . . . 5
⊢ (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (𝑤 ≠ 0 ↔ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0)) |
| 54 | | breq2 5147 |
. . . . 5
⊢ (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (seq𝑃( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))) |
| 55 | 53, 54 | anbi12d 632 |
. . . 4
⊢ (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → ((𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤) ↔ ((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)))) |
| 56 | 52, 55 | spcev 3606 |
. . 3
⊢ ((((
⇝ ‘seq𝑃(
· , 𝐹)) ·
𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) |
| 57 | 28, 51, 56 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) |
| 58 | | seqeq1 14045 |
. . . . . 6
⊢ (𝑞 = 𝑃 → seq𝑞( · , 𝐻) = seq𝑃( · , 𝐻)) |
| 59 | 58 | breq1d 5153 |
. . . . 5
⊢ (𝑞 = 𝑃 → (seq𝑞( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ 𝑤)) |
| 60 | 59 | anbi2d 630 |
. . . 4
⊢ (𝑞 = 𝑃 → ((𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))) |
| 61 | 60 | exbidv 1921 |
. . 3
⊢ (𝑞 = 𝑃 → (∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))) |
| 62 | 61 | rspcev 3622 |
. 2
⊢ ((𝑃 ∈ 𝑍 ∧ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) → ∃𝑞 ∈ 𝑍 ∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤)) |
| 63 | 1, 57, 62 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑞 ∈ 𝑍 ∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤)) |