![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqid | Structured version Visualization version GIF version |
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqid.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) |
seqid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
seqid.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqid.4 | ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) |
seqid.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
Ref | Expression |
---|---|
seqid | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqid.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 12856 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | seq1 14005 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
5 | seqeq1 13995 | . . . . . 6 ⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) | |
6 | 5 | fveq1d 6893 | . . . . 5 ⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
7 | 6 | eqeq1d 2730 | . . . 4 ⊢ (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
8 | 4, 7 | syl5ibcom 244 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
9 | eluzel2 12851 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | seqm1 14010 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | |
12 | 10, 11 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
13 | oveq2 7422 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍)) | |
14 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → 𝑥 = 𝑍) | |
15 | 13, 14 | eqeq12d 2744 | . . . . . . . . 9 ⊢ (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍)) |
16 | seqid.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) | |
17 | 16 | ralrimiva 3142 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
18 | seqid.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
19 | 15, 17, 18 | rspcdva 3609 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍) |
21 | eluzp1m1 12872 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | |
22 | 10, 21 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
23 | seqid.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) | |
24 | 23 | adantlr 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
25 | 20, 22, 24 | seqid3 14037 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍) |
26 | 25 | oveq1d 7429 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁)) = (𝑍 + (𝐹‘𝑁))) |
27 | oveq2 7422 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘𝑁))) | |
28 | id 22 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → 𝑥 = (𝐹‘𝑁)) | |
29 | 27, 28 | eqeq12d 2744 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
30 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
31 | seqid.4 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) | |
32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑁) ∈ 𝑆) |
33 | 29, 30, 32 | rspcdva 3609 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁)) |
34 | 12, 26, 33 | 3eqtrd 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
36 | uzp1 12887 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | |
37 | 1, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
38 | 8, 35, 37 | mpjaod 859 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
39 | eqidd 2729 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
40 | 1, 38, 39 | seqfeq2 14016 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 1c1 11133 + caddc 11135 − cmin 11468 ℤcz 12582 ℤ≥cuz 12846 ...cfz 13510 seqcseq 13992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-seq 13993 |
This theorem is referenced by: seqcoll 14451 sumrblem 15683 prodrblem 15899 logtayl 26587 leibpilem2 26866 |
Copyright terms: Public domain | W3C validator |