MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid Structured version   Visualization version   GIF version

Theorem seqid 14038
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
seqid.2 (𝜑𝑍𝑆)
seqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
seqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥

Proof of Theorem seqid
StepHypRef Expression
1 seqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 12856 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 seq1 14005 . . . . 5 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
41, 2, 33syl 18 . . . 4 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
5 seqeq1 13995 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
65fveq1d 6893 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
76eqeq1d 2730 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
84, 7syl5ibcom 244 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
9 eluzel2 12851 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
101, 9syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
11 seqm1 14010 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
1210, 11sylan 579 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
13 oveq2 7422 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
14 id 22 . . . . . . . . . 10 (𝑥 = 𝑍𝑥 = 𝑍)
1513, 14eqeq12d 2744 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
16 seqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
1716ralrimiva 3142 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
18 seqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
1915, 17, 18rspcdva 3609 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
2019adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
21 eluzp1m1 12872 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2210, 21sylan 579 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
23 seqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2423adantlr 714 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2520, 22, 24seqid3 14037 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍)
2625oveq1d 7429 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
27 oveq2 7422 . . . . . . 7 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
28 id 22 . . . . . . 7 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
2927, 28eqeq12d 2744 . . . . . 6 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
3017adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
31 seqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
3231adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
3329, 30, 32rspcdva 3609 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
3412, 26, 333eqtrd 2772 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
3534ex 412 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
36 uzp1 12887 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
371, 36syl 17 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
388, 35, 37mpjaod 859 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
39 eqidd 2729 . 2 ((𝜑𝑥 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
401, 38, 39seqfeq2 14016 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wral 3057  cres 5674  cfv 6542  (class class class)co 7414  1c1 11133   + caddc 11135  cmin 11468  cz 12582  cuz 12846  ...cfz 13510  seqcseq 13992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-seq 13993
This theorem is referenced by:  seqcoll  14451  sumrblem  15683  prodrblem  15899  logtayl  26587  leibpilem2  26866
  Copyright terms: Public domain W3C validator