MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid Structured version   Visualization version   GIF version

Theorem seqid 14070
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
seqid.2 (𝜑𝑍𝑆)
seqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
seqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥

Proof of Theorem seqid
StepHypRef Expression
1 seqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 12867 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 seq1 14037 . . . . 5 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
41, 2, 33syl 18 . . . 4 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
5 seqeq1 14027 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
65fveq1d 6883 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
76eqeq1d 2738 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
84, 7syl5ibcom 245 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
9 eluzel2 12862 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
101, 9syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
11 seqm1 14042 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
1210, 11sylan 580 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
13 oveq2 7418 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
14 id 22 . . . . . . . . . 10 (𝑥 = 𝑍𝑥 = 𝑍)
1513, 14eqeq12d 2752 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
16 seqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
1716ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
18 seqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
1915, 17, 18rspcdva 3607 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
2019adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
21 eluzp1m1 12883 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2210, 21sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
23 seqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2423adantlr 715 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2520, 22, 24seqid3 14069 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍)
2625oveq1d 7425 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
27 oveq2 7418 . . . . . . 7 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
28 id 22 . . . . . . 7 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
2927, 28eqeq12d 2752 . . . . . 6 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
3017adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
31 seqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
3231adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
3329, 30, 32rspcdva 3607 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
3412, 26, 333eqtrd 2775 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
3534ex 412 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
36 uzp1 12898 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
371, 36syl 17 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
388, 35, 37mpjaod 860 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
39 eqidd 2737 . 2 ((𝜑𝑥 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
401, 38, 39seqfeq2 14048 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  cres 5661  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  cmin 11471  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025
This theorem is referenced by:  seqcoll  14487  sumrblem  15732  prodrblem  15950  logtayl  26626  leibpilem2  26908
  Copyright terms: Public domain W3C validator