| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqid | Structured version Visualization version GIF version | ||
| Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqid.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) |
| seqid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| seqid.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqid.4 | ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) |
| seqid.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
| Ref | Expression |
|---|---|
| seqid | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzelz 12763 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | seq1 13939 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 5 | seqeq1 13929 | . . . . . 6 ⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) | |
| 6 | 5 | fveq1d 6828 | . . . . 5 ⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 7 | 6 | eqeq1d 2731 | . . . 4 ⊢ (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 8 | 4, 7 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 9 | eluzel2 12758 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | seqm1 13944 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | |
| 12 | 10, 11 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
| 13 | oveq2 7361 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍)) | |
| 14 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → 𝑥 = 𝑍) | |
| 15 | 13, 14 | eqeq12d 2745 | . . . . . . . . 9 ⊢ (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍)) |
| 16 | seqid.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) | |
| 17 | 16 | ralrimiva 3121 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
| 18 | seqid.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
| 19 | 15, 17, 18 | rspcdva 3580 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
| 20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍) |
| 21 | eluzp1m1 12779 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | |
| 22 | 10, 21 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
| 23 | seqid.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) | |
| 24 | 23 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
| 25 | 20, 22, 24 | seqid3 13971 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍) |
| 26 | 25 | oveq1d 7368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁)) = (𝑍 + (𝐹‘𝑁))) |
| 27 | oveq2 7361 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘𝑁))) | |
| 28 | id 22 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → 𝑥 = (𝐹‘𝑁)) | |
| 29 | 27, 28 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
| 30 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
| 31 | seqid.4 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) | |
| 32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑁) ∈ 𝑆) |
| 33 | 29, 30, 32 | rspcdva 3580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁)) |
| 34 | 12, 26, 33 | 3eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 36 | uzp1 12794 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | |
| 37 | 1, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 38 | 8, 35, 37 | mpjaod 860 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 39 | eqidd 2730 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 40 | 1, 38, 39 | seqfeq2 13950 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 1c1 11029 + caddc 11031 − cmin 11365 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 seqcseq 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 |
| This theorem is referenced by: seqcoll 14389 sumrblem 15636 prodrblem 15854 logtayl 26585 leibpilem2 26867 |
| Copyright terms: Public domain | W3C validator |