MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid Structured version   Visualization version   GIF version

Theorem seqid 13869
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
seqid.2 (𝜑𝑍𝑆)
seqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
seqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥

Proof of Theorem seqid
StepHypRef Expression
1 seqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 12693 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 seq1 13835 . . . . 5 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
41, 2, 33syl 18 . . . 4 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
5 seqeq1 13825 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
65fveq1d 6827 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
76eqeq1d 2738 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
84, 7syl5ibcom 244 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
9 eluzel2 12688 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
101, 9syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
11 seqm1 13841 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
1210, 11sylan 580 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
13 oveq2 7345 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
14 id 22 . . . . . . . . . 10 (𝑥 = 𝑍𝑥 = 𝑍)
1513, 14eqeq12d 2752 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
16 seqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
1716ralrimiva 3139 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
18 seqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
1915, 17, 18rspcdva 3571 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
2019adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
21 eluzp1m1 12709 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2210, 21sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
23 seqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2423adantlr 712 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2520, 22, 24seqid3 13868 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍)
2625oveq1d 7352 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
27 oveq2 7345 . . . . . . 7 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
28 id 22 . . . . . . 7 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
2927, 28eqeq12d 2752 . . . . . 6 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
3017adantr 481 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
31 seqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
3231adantr 481 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
3329, 30, 32rspcdva 3571 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
3412, 26, 333eqtrd 2780 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
3534ex 413 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
36 uzp1 12720 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
371, 36syl 17 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
388, 35, 37mpjaod 857 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
39 eqidd 2737 . 2 ((𝜑𝑥 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
401, 38, 39seqfeq2 13847 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  cres 5622  cfv 6479  (class class class)co 7337  1c1 10973   + caddc 10975  cmin 11306  cz 12420  cuz 12683  ...cfz 13340  seqcseq 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-seq 13823
This theorem is referenced by:  seqcoll  14278  sumrblem  15522  prodrblem  15738  logtayl  25921  leibpilem2  26197
  Copyright terms: Public domain W3C validator