MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid Structured version   Visualization version   GIF version

Theorem seqid 13956
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
seqid.2 (𝜑𝑍𝑆)
seqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
seqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥

Proof of Theorem seqid
StepHypRef Expression
1 seqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 12748 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 seq1 13923 . . . . 5 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
41, 2, 33syl 18 . . . 4 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
5 seqeq1 13913 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
65fveq1d 6830 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
76eqeq1d 2735 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
84, 7syl5ibcom 245 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
9 eluzel2 12743 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
101, 9syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
11 seqm1 13928 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
1210, 11sylan 580 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
13 oveq2 7360 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
14 id 22 . . . . . . . . . 10 (𝑥 = 𝑍𝑥 = 𝑍)
1513, 14eqeq12d 2749 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
16 seqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
1716ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
18 seqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
1915, 17, 18rspcdva 3574 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
2019adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
21 eluzp1m1 12764 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
2210, 21sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
23 seqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2423adantlr 715 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
2520, 22, 24seqid3 13955 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍)
2625oveq1d 7367 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
27 oveq2 7360 . . . . . . 7 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
28 id 22 . . . . . . 7 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
2927, 28eqeq12d 2749 . . . . . 6 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
3017adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
31 seqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
3231adantr 480 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
3329, 30, 32rspcdva 3574 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
3412, 26, 333eqtrd 2772 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
3534ex 412 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁)))
36 uzp1 12775 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
371, 36syl 17 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
388, 35, 37mpjaod 860 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹𝑁))
39 eqidd 2734 . 2 ((𝜑𝑥 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
401, 38, 39seqfeq2 13934 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  cres 5621  cfv 6486  (class class class)co 7352  1c1 11014   + caddc 11016  cmin 11351  cz 12475  cuz 12738  ...cfz 13409  seqcseq 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911
This theorem is referenced by:  seqcoll  14373  sumrblem  15620  prodrblem  15838  logtayl  26597  leibpilem2  26879
  Copyright terms: Public domain W3C validator