Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqid | Structured version Visualization version GIF version |
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqid.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) |
seqid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
seqid.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqid.4 | ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) |
seqid.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
Ref | Expression |
---|---|
seqid | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqid.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 12521 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | seq1 13662 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
5 | seqeq1 13652 | . . . . . 6 ⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) | |
6 | 5 | fveq1d 6758 | . . . . 5 ⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
7 | 6 | eqeq1d 2740 | . . . 4 ⊢ (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
8 | 4, 7 | syl5ibcom 244 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
9 | eluzel2 12516 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | seqm1 13668 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | |
12 | 10, 11 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
13 | oveq2 7263 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍)) | |
14 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → 𝑥 = 𝑍) | |
15 | 13, 14 | eqeq12d 2754 | . . . . . . . . 9 ⊢ (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍)) |
16 | seqid.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) | |
17 | 16 | ralrimiva 3107 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
18 | seqid.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
19 | 15, 17, 18 | rspcdva 3554 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍) |
21 | eluzp1m1 12537 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | |
22 | 10, 21 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
23 | seqid.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) | |
24 | 23 | adantlr 711 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
25 | 20, 22, 24 | seqid3 13695 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍) |
26 | 25 | oveq1d 7270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁)) = (𝑍 + (𝐹‘𝑁))) |
27 | oveq2 7263 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘𝑁))) | |
28 | id 22 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑁) → 𝑥 = (𝐹‘𝑁)) | |
29 | 27, 28 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
30 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
31 | seqid.4 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) | |
32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑁) ∈ 𝑆) |
33 | 29, 30, 32 | rspcdva 3554 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁)) |
34 | 12, 26, 33 | 3eqtrd 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
36 | uzp1 12548 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | |
37 | 1, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
38 | 8, 35, 37 | mpjaod 856 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
39 | eqidd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
40 | 1, 38, 39 | seqfeq2 13674 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: seqcoll 14106 sumrblem 15351 prodrblem 15567 logtayl 25720 leibpilem2 25996 |
Copyright terms: Public domain | W3C validator |