MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqz Structured version   Visualization version   GIF version

Theorem seqz 13956
Description: If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqhomo.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqz.3 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
seqz.4 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
seqz.5 (𝜑𝐾 ∈ (𝑀...𝑁))
seqz.6 (𝜑𝑁𝑉)
seqz.7 (𝜑 → (𝐹𝐾) = 𝑍)
Assertion
Ref Expression
seqz (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seqz
StepHypRef Expression
1 seqz.5 . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 13437 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑𝐾 ∈ (ℤ𝑀))
41elfzelzd 13442 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
5 seq1 13919 . . . . . . . 8 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
64, 5syl 17 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
7 seqz.7 . . . . . . 7 (𝜑 → (𝐹𝐾) = 𝑍)
86, 7eqtrd 2776 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = 𝑍)
9 seqeq1 13909 . . . . . . . 8 (𝐾 = 𝑀 → seq𝐾( + , 𝐹) = seq𝑀( + , 𝐹))
109fveq1d 6844 . . . . . . 7 (𝐾 = 𝑀 → (seq𝐾( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
1110eqeq1d 2738 . . . . . 6 (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
128, 11syl5ibcom 244 . . . . 5 (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
13 eluzel2 12768 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
143, 13syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
15 seqm1 13925 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
1614, 15sylan 580 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
177adantr 481 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝐾) = 𝑍)
1817oveq2d 7373 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
19 oveq1 7364 . . . . . . . . . 10 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
2019eqeq1d 2738 . . . . . . . . 9 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍))
21 seqz.4 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
2221ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
2322adantr 481 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
24 eluzp1m1 12789 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
2514, 24sylan 580 . . . . . . . . . 10 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
26 fzssp1 13484 . . . . . . . . . . . . . . 15 (𝑀...(𝐾 − 1)) ⊆ (𝑀...((𝐾 − 1) + 1))
274zcnd 12608 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
28 ax-1cn 11109 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
29 npcan 11410 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3027, 28, 29sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3130oveq2d 7373 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...((𝐾 − 1) + 1)) = (𝑀...𝐾))
3226, 31sseqtrid 3996 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝐾))
33 elfzuz3 13438 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
341, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ𝐾))
35 fzss2 13481 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3634, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3732, 36sstrd 3954 . . . . . . . . . . . . 13 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
3837adantr 481 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
3938sselda 3944 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
40 seqhomo.2 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
4140adantlr 713 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
4239, 41syldan 591 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹𝑥) ∈ 𝑆)
43 seqhomo.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4443adantlr 713 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4525, 42, 44seqcl 13928 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆)
4620, 23, 45rspcdva 3582 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍)
4718, 46eqtrd 2776 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = 𝑍)
4816, 47eqtrd 2776 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
4948ex 413 . . . . 5 (𝜑 → (𝐾 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
50 uzp1 12804 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
513, 50syl 17 . . . . 5 (𝜑 → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5212, 49, 51mpjaod 858 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5352, 7eqtr4d 2779 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐹𝐾))
54 eqidd 2737 . . 3 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = (𝐹𝑥))
553, 53, 34, 54seqfveq2 13930 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐹)‘𝑁))
56 fvex 6855 . . . . . 6 (𝐹𝐾) ∈ V
5756elsn 4601 . . . . 5 ((𝐹𝐾) ∈ {𝑍} ↔ (𝐹𝐾) = 𝑍)
587, 57sylibr 233 . . . 4 (𝜑 → (𝐹𝐾) ∈ {𝑍})
59 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 ∈ {𝑍})
60 velsn 4602 . . . . . . . 8 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
6159, 60sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 = 𝑍)
6261oveq1d 7372 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = (𝑍 + 𝑦))
63 oveq2 7365 . . . . . . . 8 (𝑥 = 𝑦 → (𝑍 + 𝑥) = (𝑍 + 𝑦))
6463eqeq1d 2738 . . . . . . 7 (𝑥 = 𝑦 → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + 𝑦) = 𝑍))
65 seqz.3 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
6665ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
6766adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
68 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑦𝑆)
6964, 67, 68rspcdva 3582 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑍 + 𝑦) = 𝑍)
7062, 69eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = 𝑍)
71 ovex 7390 . . . . . 6 (𝑥 + 𝑦) ∈ V
7271elsn 4601 . . . . 5 ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑥 + 𝑦) = 𝑍)
7370, 72sylibr 233 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) ∈ {𝑍})
74 peano2uz 12826 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
753, 74syl 17 . . . . . . 7 (𝜑 → (𝐾 + 1) ∈ (ℤ𝑀))
76 fzss1 13480 . . . . . . 7 ((𝐾 + 1) ∈ (ℤ𝑀) → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
7775, 76syl 17 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
7877sselda 3944 . . . . 5 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
7978, 40syldan 591 . . . 4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
8058, 73, 34, 79seqcl2 13926 . . 3 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍})
81 elsni 4603 . . 3 ((seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8280, 81syl 17 . 2 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8355, 82eqtrd 2776 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054  cmin 11385  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907
This theorem is referenced by:  bcval5  14218  elqaalem2  25680  lgsne0  26683
  Copyright terms: Public domain W3C validator