HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscomi Structured version   Visualization version   GIF version

Theorem shscomi 29733
Description: Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shscomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem shscomi
StepHypRef Expression
1 shincl.1 . 2 𝐴S
2 shincl.2 . 2 𝐵S
3 shscom 29689 . 2 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 689 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7267   S csh 29298   + cph 29301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-hilex 29369  ax-hfvadd 29370  ax-hvcom 29371  ax-hvass 29372  ax-hv0cl 29373  ax-hvaddid 29374  ax-hfvmul 29375  ax-hvmulid 29376  ax-hvdistr2 29379  ax-hvmul0 29380
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-po 5498  df-so 5499  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-ltxr 11024  df-sub 11217  df-neg 11218  df-grpo 28863  df-ablo 28915  df-hvsub 29341  df-sh 29577  df-shs 29678
This theorem is referenced by:  shslubi  29755  shlesb1i  29756  shmodsi  29759  5oalem1  30024  5oalem2  30025  3oalem2  30033  3oalem5  30036  cdj3lem3  30808  cdj3lem3b  30810
  Copyright terms: Public domain W3C validator