| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oa.1 | ⊢ 𝐴 ∈ Cℋ |
| 3oa.2 | ⊢ 𝐵 ∈ Cℋ |
| 3oa.3 | ⊢ 𝐶 ∈ Cℋ |
| 3oa.4 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
| 3oa.5 | ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) |
| Ref | Expression |
|---|---|
| 3oalem6 | ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oa.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 1 | chshii 31154 | . . 3 ⊢ 𝐵 ∈ Sℋ |
| 3 | 3oa.4 | . . . . . 6 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
| 4 | 1 | choccli 31234 | . . . . . . 7 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 5 | 3oa.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
| 6 | 1, 5 | chjcli 31384 | . . . . . . 7 ⊢ (𝐵 ∨ℋ 𝐴) ∈ Cℋ |
| 7 | 4, 6 | chincli 31387 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ |
| 8 | 3, 7 | eqeltri 2830 | . . . . 5 ⊢ 𝑅 ∈ Cℋ |
| 9 | 8 | chshii 31154 | . . . 4 ⊢ 𝑅 ∈ Sℋ |
| 10 | 3oa.5 | . . . . . . 7 ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) | |
| 11 | 3oa.3 | . . . . . . . . 9 ⊢ 𝐶 ∈ Cℋ | |
| 12 | 11 | choccli 31234 | . . . . . . . 8 ⊢ (⊥‘𝐶) ∈ Cℋ |
| 13 | 11, 5 | chjcli 31384 | . . . . . . . 8 ⊢ (𝐶 ∨ℋ 𝐴) ∈ Cℋ |
| 14 | 12, 13 | chincli 31387 | . . . . . . 7 ⊢ ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ∈ Cℋ |
| 15 | 10, 14 | eqeltri 2830 | . . . . . 6 ⊢ 𝑆 ∈ Cℋ |
| 16 | 15 | chshii 31154 | . . . . 5 ⊢ 𝑆 ∈ Sℋ |
| 17 | 11 | chshii 31154 | . . . . . . 7 ⊢ 𝐶 ∈ Sℋ |
| 18 | 2, 17 | shscli 31244 | . . . . . 6 ⊢ (𝐵 +ℋ 𝐶) ∈ Sℋ |
| 19 | 9, 16 | shscli 31244 | . . . . . 6 ⊢ (𝑅 +ℋ 𝑆) ∈ Sℋ |
| 20 | 18, 19 | shincli 31289 | . . . . 5 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ∈ Sℋ |
| 21 | 16, 20 | shscli 31244 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ∈ Sℋ |
| 22 | 9, 21 | shincli 31289 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ∈ Sℋ |
| 23 | 2, 22 | shsleji 31297 | . 2 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| 24 | 16, 20 | shsleji 31297 | . . . . 5 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) |
| 25 | 1, 11 | chsleji 31385 | . . . . . . . 8 ⊢ (𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) |
| 26 | ssrin 4217 | . . . . . . . 8 ⊢ ((𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) → ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) |
| 28 | 8, 15 | chsleji 31385 | . . . . . . . 8 ⊢ (𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) |
| 29 | sslin 4218 | . . . . . . . 8 ⊢ ((𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) → ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
| 31 | 27, 30 | sstri 3968 | . . . . . 6 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
| 32 | 1, 11 | chjcli 31384 | . . . . . . . . 9 ⊢ (𝐵 ∨ℋ 𝐶) ∈ Cℋ |
| 33 | 8, 15 | chjcli 31384 | . . . . . . . . 9 ⊢ (𝑅 ∨ℋ 𝑆) ∈ Cℋ |
| 34 | 32, 33 | chincli 31387 | . . . . . . . 8 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Cℋ |
| 35 | 34 | chshii 31154 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Sℋ |
| 36 | 20, 35, 16 | shlej2i 31306 | . . . . . 6 ⊢ (((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) → (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
| 37 | 31, 36 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
| 38 | 24, 37 | sstri 3968 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
| 39 | sslin 4218 | . . . 4 ⊢ ((𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) → (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | |
| 40 | 38, 39 | ax-mp 5 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
| 41 | 15, 34 | chjcli 31384 | . . . . . 6 ⊢ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) ∈ Cℋ |
| 42 | 8, 41 | chincli 31387 | . . . . 5 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Cℋ |
| 43 | 42 | chshii 31154 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Sℋ |
| 44 | 22, 43, 2 | shlej2i 31306 | . . 3 ⊢ ((𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) → (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))))) |
| 45 | 40, 44 | ax-mp 5 | . 2 ⊢ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| 46 | 23, 45 | sstri 3968 | 1 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 Cℋ cch 30856 ⊥cort 30857 +ℋ cph 30858 ∨ℋ chj 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 ax-hcompl 31129 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cn 23163 df-cnp 23164 df-lm 23165 df-haus 23251 df-tx 23498 df-hmeo 23691 df-xms 24257 df-ms 24258 df-tms 24259 df-cau 25206 df-grpo 30420 df-gid 30421 df-ginv 30422 df-gdiv 30423 df-ablo 30472 df-vc 30486 df-nv 30519 df-va 30522 df-ba 30523 df-sm 30524 df-0v 30525 df-vs 30526 df-nmcv 30527 df-ims 30528 df-dip 30628 df-hnorm 30895 df-hvsub 30898 df-hlim 30899 df-hcau 30900 df-sh 31134 df-ch 31148 df-oc 31179 df-shs 31235 df-chj 31237 |
| This theorem is referenced by: 3oai 31595 |
| Copyright terms: Public domain | W3C validator |