| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oa.1 | ⊢ 𝐴 ∈ Cℋ |
| 3oa.2 | ⊢ 𝐵 ∈ Cℋ |
| 3oa.3 | ⊢ 𝐶 ∈ Cℋ |
| 3oa.4 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
| 3oa.5 | ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) |
| Ref | Expression |
|---|---|
| 3oalem6 | ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oa.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 1 | chshii 31246 | . . 3 ⊢ 𝐵 ∈ Sℋ |
| 3 | 3oa.4 | . . . . . 6 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
| 4 | 1 | choccli 31326 | . . . . . . 7 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 5 | 3oa.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
| 6 | 1, 5 | chjcli 31476 | . . . . . . 7 ⊢ (𝐵 ∨ℋ 𝐴) ∈ Cℋ |
| 7 | 4, 6 | chincli 31479 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ |
| 8 | 3, 7 | eqeltri 2837 | . . . . 5 ⊢ 𝑅 ∈ Cℋ |
| 9 | 8 | chshii 31246 | . . . 4 ⊢ 𝑅 ∈ Sℋ |
| 10 | 3oa.5 | . . . . . . 7 ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) | |
| 11 | 3oa.3 | . . . . . . . . 9 ⊢ 𝐶 ∈ Cℋ | |
| 12 | 11 | choccli 31326 | . . . . . . . 8 ⊢ (⊥‘𝐶) ∈ Cℋ |
| 13 | 11, 5 | chjcli 31476 | . . . . . . . 8 ⊢ (𝐶 ∨ℋ 𝐴) ∈ Cℋ |
| 14 | 12, 13 | chincli 31479 | . . . . . . 7 ⊢ ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ∈ Cℋ |
| 15 | 10, 14 | eqeltri 2837 | . . . . . 6 ⊢ 𝑆 ∈ Cℋ |
| 16 | 15 | chshii 31246 | . . . . 5 ⊢ 𝑆 ∈ Sℋ |
| 17 | 11 | chshii 31246 | . . . . . . 7 ⊢ 𝐶 ∈ Sℋ |
| 18 | 2, 17 | shscli 31336 | . . . . . 6 ⊢ (𝐵 +ℋ 𝐶) ∈ Sℋ |
| 19 | 9, 16 | shscli 31336 | . . . . . 6 ⊢ (𝑅 +ℋ 𝑆) ∈ Sℋ |
| 20 | 18, 19 | shincli 31381 | . . . . 5 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ∈ Sℋ |
| 21 | 16, 20 | shscli 31336 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ∈ Sℋ |
| 22 | 9, 21 | shincli 31381 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ∈ Sℋ |
| 23 | 2, 22 | shsleji 31389 | . 2 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| 24 | 16, 20 | shsleji 31389 | . . . . 5 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) |
| 25 | 1, 11 | chsleji 31477 | . . . . . . . 8 ⊢ (𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) |
| 26 | ssrin 4242 | . . . . . . . 8 ⊢ ((𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) → ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) |
| 28 | 8, 15 | chsleji 31477 | . . . . . . . 8 ⊢ (𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) |
| 29 | sslin 4243 | . . . . . . . 8 ⊢ ((𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) → ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
| 31 | 27, 30 | sstri 3993 | . . . . . 6 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
| 32 | 1, 11 | chjcli 31476 | . . . . . . . . 9 ⊢ (𝐵 ∨ℋ 𝐶) ∈ Cℋ |
| 33 | 8, 15 | chjcli 31476 | . . . . . . . . 9 ⊢ (𝑅 ∨ℋ 𝑆) ∈ Cℋ |
| 34 | 32, 33 | chincli 31479 | . . . . . . . 8 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Cℋ |
| 35 | 34 | chshii 31246 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Sℋ |
| 36 | 20, 35, 16 | shlej2i 31398 | . . . . . 6 ⊢ (((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) → (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
| 37 | 31, 36 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
| 38 | 24, 37 | sstri 3993 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
| 39 | sslin 4243 | . . . 4 ⊢ ((𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) → (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | |
| 40 | 38, 39 | ax-mp 5 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
| 41 | 15, 34 | chjcli 31476 | . . . . . 6 ⊢ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) ∈ Cℋ |
| 42 | 8, 41 | chincli 31479 | . . . . 5 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Cℋ |
| 43 | 42 | chshii 31246 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Sℋ |
| 44 | 22, 43, 2 | shlej2i 31398 | . . 3 ⊢ ((𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) → (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))))) |
| 45 | 40, 44 | ax-mp 5 | . 2 ⊢ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| 46 | 23, 45 | sstri 3993 | 1 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 Cℋ cch 30948 ⊥cort 30949 +ℋ cph 30950 ∨ℋ chj 30952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 ax-hcompl 31221 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-lm 23237 df-haus 23323 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 df-cau 25290 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-dip 30720 df-hnorm 30987 df-hvsub 30990 df-hlim 30991 df-hcau 30992 df-sh 31226 df-ch 31240 df-oc 31271 df-shs 31327 df-chj 31329 |
| This theorem is referenced by: 3oai 31687 |
| Copyright terms: Public domain | W3C validator |