![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem6 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oa.1 | ⊢ 𝐴 ∈ Cℋ |
3oa.2 | ⊢ 𝐵 ∈ Cℋ |
3oa.3 | ⊢ 𝐶 ∈ Cℋ |
3oa.4 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
3oa.5 | ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) |
Ref | Expression |
---|---|
3oalem6 | ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oa.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | chshii 31259 | . . 3 ⊢ 𝐵 ∈ Sℋ |
3 | 3oa.4 | . . . . . 6 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
4 | 1 | choccli 31339 | . . . . . . 7 ⊢ (⊥‘𝐵) ∈ Cℋ |
5 | 3oa.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
6 | 1, 5 | chjcli 31489 | . . . . . . 7 ⊢ (𝐵 ∨ℋ 𝐴) ∈ Cℋ |
7 | 4, 6 | chincli 31492 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ |
8 | 3, 7 | eqeltri 2840 | . . . . 5 ⊢ 𝑅 ∈ Cℋ |
9 | 8 | chshii 31259 | . . . 4 ⊢ 𝑅 ∈ Sℋ |
10 | 3oa.5 | . . . . . . 7 ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) | |
11 | 3oa.3 | . . . . . . . . 9 ⊢ 𝐶 ∈ Cℋ | |
12 | 11 | choccli 31339 | . . . . . . . 8 ⊢ (⊥‘𝐶) ∈ Cℋ |
13 | 11, 5 | chjcli 31489 | . . . . . . . 8 ⊢ (𝐶 ∨ℋ 𝐴) ∈ Cℋ |
14 | 12, 13 | chincli 31492 | . . . . . . 7 ⊢ ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ∈ Cℋ |
15 | 10, 14 | eqeltri 2840 | . . . . . 6 ⊢ 𝑆 ∈ Cℋ |
16 | 15 | chshii 31259 | . . . . 5 ⊢ 𝑆 ∈ Sℋ |
17 | 11 | chshii 31259 | . . . . . . 7 ⊢ 𝐶 ∈ Sℋ |
18 | 2, 17 | shscli 31349 | . . . . . 6 ⊢ (𝐵 +ℋ 𝐶) ∈ Sℋ |
19 | 9, 16 | shscli 31349 | . . . . . 6 ⊢ (𝑅 +ℋ 𝑆) ∈ Sℋ |
20 | 18, 19 | shincli 31394 | . . . . 5 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ∈ Sℋ |
21 | 16, 20 | shscli 31349 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ∈ Sℋ |
22 | 9, 21 | shincli 31394 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ∈ Sℋ |
23 | 2, 22 | shsleji 31402 | . 2 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
24 | 16, 20 | shsleji 31402 | . . . . 5 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) |
25 | 1, 11 | chsleji 31490 | . . . . . . . 8 ⊢ (𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) |
26 | ssrin 4263 | . . . . . . . 8 ⊢ ((𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) → ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) |
28 | 8, 15 | chsleji 31490 | . . . . . . . 8 ⊢ (𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) |
29 | sslin 4264 | . . . . . . . 8 ⊢ ((𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) → ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) | |
30 | 28, 29 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
31 | 27, 30 | sstri 4018 | . . . . . 6 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
32 | 1, 11 | chjcli 31489 | . . . . . . . . 9 ⊢ (𝐵 ∨ℋ 𝐶) ∈ Cℋ |
33 | 8, 15 | chjcli 31489 | . . . . . . . . 9 ⊢ (𝑅 ∨ℋ 𝑆) ∈ Cℋ |
34 | 32, 33 | chincli 31492 | . . . . . . . 8 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Cℋ |
35 | 34 | chshii 31259 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Sℋ |
36 | 20, 35, 16 | shlej2i 31411 | . . . . . 6 ⊢ (((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) → (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
37 | 31, 36 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
38 | 24, 37 | sstri 4018 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
39 | sslin 4264 | . . . 4 ⊢ ((𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) → (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | |
40 | 38, 39 | ax-mp 5 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
41 | 15, 34 | chjcli 31489 | . . . . . 6 ⊢ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) ∈ Cℋ |
42 | 8, 41 | chincli 31492 | . . . . 5 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Cℋ |
43 | 42 | chshii 31259 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Sℋ |
44 | 22, 43, 2 | shlej2i 31411 | . . 3 ⊢ ((𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) → (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))))) |
45 | 40, 44 | ax-mp 5 | . 2 ⊢ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
46 | 23, 45 | sstri 4018 | 1 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Cℋ cch 30961 ⊥cort 30962 +ℋ cph 30963 ∨ℋ chj 30965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cau 25309 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-hnorm 31000 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-shs 31340 df-chj 31342 |
This theorem is referenced by: 3oai 31700 |
Copyright terms: Public domain | W3C validator |