![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem6 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oa.1 | ⊢ 𝐴 ∈ Cℋ |
3oa.2 | ⊢ 𝐵 ∈ Cℋ |
3oa.3 | ⊢ 𝐶 ∈ Cℋ |
3oa.4 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
3oa.5 | ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) |
Ref | Expression |
---|---|
3oalem6 | ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oa.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | chshii 31255 | . . 3 ⊢ 𝐵 ∈ Sℋ |
3 | 3oa.4 | . . . . . 6 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
4 | 1 | choccli 31335 | . . . . . . 7 ⊢ (⊥‘𝐵) ∈ Cℋ |
5 | 3oa.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
6 | 1, 5 | chjcli 31485 | . . . . . . 7 ⊢ (𝐵 ∨ℋ 𝐴) ∈ Cℋ |
7 | 4, 6 | chincli 31488 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ |
8 | 3, 7 | eqeltri 2834 | . . . . 5 ⊢ 𝑅 ∈ Cℋ |
9 | 8 | chshii 31255 | . . . 4 ⊢ 𝑅 ∈ Sℋ |
10 | 3oa.5 | . . . . . . 7 ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) | |
11 | 3oa.3 | . . . . . . . . 9 ⊢ 𝐶 ∈ Cℋ | |
12 | 11 | choccli 31335 | . . . . . . . 8 ⊢ (⊥‘𝐶) ∈ Cℋ |
13 | 11, 5 | chjcli 31485 | . . . . . . . 8 ⊢ (𝐶 ∨ℋ 𝐴) ∈ Cℋ |
14 | 12, 13 | chincli 31488 | . . . . . . 7 ⊢ ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ∈ Cℋ |
15 | 10, 14 | eqeltri 2834 | . . . . . 6 ⊢ 𝑆 ∈ Cℋ |
16 | 15 | chshii 31255 | . . . . 5 ⊢ 𝑆 ∈ Sℋ |
17 | 11 | chshii 31255 | . . . . . . 7 ⊢ 𝐶 ∈ Sℋ |
18 | 2, 17 | shscli 31345 | . . . . . 6 ⊢ (𝐵 +ℋ 𝐶) ∈ Sℋ |
19 | 9, 16 | shscli 31345 | . . . . . 6 ⊢ (𝑅 +ℋ 𝑆) ∈ Sℋ |
20 | 18, 19 | shincli 31390 | . . . . 5 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ∈ Sℋ |
21 | 16, 20 | shscli 31345 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ∈ Sℋ |
22 | 9, 21 | shincli 31390 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ∈ Sℋ |
23 | 2, 22 | shsleji 31398 | . 2 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
24 | 16, 20 | shsleji 31398 | . . . . 5 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) |
25 | 1, 11 | chsleji 31486 | . . . . . . . 8 ⊢ (𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) |
26 | ssrin 4249 | . . . . . . . 8 ⊢ ((𝐵 +ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶) → ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) |
28 | 8, 15 | chsleji 31486 | . . . . . . . 8 ⊢ (𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) |
29 | sslin 4250 | . . . . . . . 8 ⊢ ((𝑅 +ℋ 𝑆) ⊆ (𝑅 ∨ℋ 𝑆) → ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) | |
30 | 28, 29 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
31 | 27, 30 | sstri 4004 | . . . . . 6 ⊢ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) |
32 | 1, 11 | chjcli 31485 | . . . . . . . . 9 ⊢ (𝐵 ∨ℋ 𝐶) ∈ Cℋ |
33 | 8, 15 | chjcli 31485 | . . . . . . . . 9 ⊢ (𝑅 ∨ℋ 𝑆) ∈ Cℋ |
34 | 32, 33 | chincli 31488 | . . . . . . . 8 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Cℋ |
35 | 34 | chshii 31255 | . . . . . . 7 ⊢ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) ∈ Sℋ |
36 | 20, 35, 16 | shlej2i 31407 | . . . . . 6 ⊢ (((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)) ⊆ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)) → (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
37 | 31, 36 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∨ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
38 | 24, 37 | sstri 4004 | . . . 4 ⊢ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) |
39 | sslin 4250 | . . . 4 ⊢ ((𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) → (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | |
40 | 38, 39 | ax-mp 5 | . . 3 ⊢ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) |
41 | 15, 34 | chjcli 31485 | . . . . . 6 ⊢ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))) ∈ Cℋ |
42 | 8, 41 | chincli 31488 | . . . . 5 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Cℋ |
43 | 42 | chshii 31255 | . . . 4 ⊢ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) ∈ Sℋ |
44 | 22, 43, 2 | shlej2i 31407 | . . 3 ⊢ ((𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))) → (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆)))))) |
45 | 40, 44 | ax-mp 5 | . 2 ⊢ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
46 | 23, 45 | sstri 4004 | 1 ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ∩ cin 3961 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Cℋ cch 30957 ⊥cort 30958 +ℋ cph 30959 ∨ℋ chj 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvmulass 31035 ax-hvdistr1 31036 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 ax-hcompl 31230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cn 23250 df-cnp 23251 df-lm 23252 df-haus 23338 df-tx 23585 df-hmeo 23778 df-xms 24345 df-ms 24346 df-tms 24347 df-cau 25303 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-dip 30729 df-hnorm 30996 df-hvsub 30999 df-hlim 31000 df-hcau 31001 df-sh 31235 df-ch 31249 df-oc 31280 df-shs 31336 df-chj 31338 |
This theorem is referenced by: 3oai 31696 |
Copyright terms: Public domain | W3C validator |