HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem6 Structured version   Visualization version   GIF version

Theorem 3oalem6 31637
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oa.1 𝐴C
3oa.2 𝐵C
3oa.3 𝐶C
3oa.4 𝑅 = ((⊥‘𝐵) ∩ (𝐵 𝐴))
3oa.5 𝑆 = ((⊥‘𝐶) ∩ (𝐶 𝐴))
Assertion
Ref Expression
3oalem6 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))

Proof of Theorem 3oalem6
StepHypRef Expression
1 3oa.2 . . . 4 𝐵C
21chshii 31197 . . 3 𝐵S
3 3oa.4 . . . . . 6 𝑅 = ((⊥‘𝐵) ∩ (𝐵 𝐴))
41choccli 31277 . . . . . . 7 (⊥‘𝐵) ∈ C
5 3oa.1 . . . . . . . 8 𝐴C
61, 5chjcli 31427 . . . . . . 7 (𝐵 𝐴) ∈ C
74, 6chincli 31430 . . . . . 6 ((⊥‘𝐵) ∩ (𝐵 𝐴)) ∈ C
83, 7eqeltri 2825 . . . . 5 𝑅C
98chshii 31197 . . . 4 𝑅S
10 3oa.5 . . . . . . 7 𝑆 = ((⊥‘𝐶) ∩ (𝐶 𝐴))
11 3oa.3 . . . . . . . . 9 𝐶C
1211choccli 31277 . . . . . . . 8 (⊥‘𝐶) ∈ C
1311, 5chjcli 31427 . . . . . . . 8 (𝐶 𝐴) ∈ C
1412, 13chincli 31430 . . . . . . 7 ((⊥‘𝐶) ∩ (𝐶 𝐴)) ∈ C
1510, 14eqeltri 2825 . . . . . 6 𝑆C
1615chshii 31197 . . . . 5 𝑆S
1711chshii 31197 . . . . . . 7 𝐶S
182, 17shscli 31287 . . . . . 6 (𝐵 + 𝐶) ∈ S
199, 16shscli 31287 . . . . . 6 (𝑅 + 𝑆) ∈ S
2018, 19shincli 31332 . . . . 5 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
2116, 20shscli 31287 . . . 4 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
229, 21shincli 31332 . . 3 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
232, 22shsleji 31340 . 2 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
2416, 20shsleji 31340 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
251, 11chsleji 31428 . . . . . . . 8 (𝐵 + 𝐶) ⊆ (𝐵 𝐶)
26 ssrin 4190 . . . . . . . 8 ((𝐵 + 𝐶) ⊆ (𝐵 𝐶) → ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 + 𝑆)))
2725, 26ax-mp 5 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 + 𝑆))
288, 15chsleji 31428 . . . . . . . 8 (𝑅 + 𝑆) ⊆ (𝑅 𝑆)
29 sslin 4191 . . . . . . . 8 ((𝑅 + 𝑆) ⊆ (𝑅 𝑆) → ((𝐵 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆)))
3028, 29ax-mp 5 . . . . . . 7 ((𝐵 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆))
3127, 30sstri 3942 . . . . . 6 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆))
321, 11chjcli 31427 . . . . . . . . 9 (𝐵 𝐶) ∈ C
338, 15chjcli 31427 . . . . . . . . 9 (𝑅 𝑆) ∈ C
3432, 33chincli 31430 . . . . . . . 8 ((𝐵 𝐶) ∩ (𝑅 𝑆)) ∈ C
3534chshii 31197 . . . . . . 7 ((𝐵 𝐶) ∩ (𝑅 𝑆)) ∈ S
3620, 35, 16shlej2i 31349 . . . . . 6 (((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆)) → (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))
3731, 36ax-mp 5 . . . . 5 (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))
3824, 37sstri 3942 . . . 4 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))
39 sslin 4191 . . . 4 ((𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))) → (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
4038, 39ax-mp 5 . . 3 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))
4115, 34chjcli 31427 . . . . . 6 (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))) ∈ C
428, 41chincli 31430 . . . . 5 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) ∈ C
4342chshii 31197 . . . 4 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) ∈ S
4422, 43, 2shlej2i 31349 . . 3 ((𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) → (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))))
4540, 44ax-mp 5 . 2 (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
4623, 45sstri 3942 1 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  cin 3899  wss 3900  cfv 6477  (class class class)co 7341   C cch 30899  cort 30900   + cph 30901   chj 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-icc 13244  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cn 23135  df-cnp 23136  df-lm 23137  df-haus 23223  df-tx 23470  df-hmeo 23663  df-xms 24228  df-ms 24229  df-tms 24230  df-cau 25176  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-dip 30671  df-hnorm 30938  df-hvsub 30941  df-hlim 30942  df-hcau 30943  df-sh 31177  df-ch 31191  df-oc 31222  df-shs 31278  df-chj 31280
This theorem is referenced by:  3oai  31638
  Copyright terms: Public domain W3C validator