HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem6 Structured version   Visualization version   GIF version

Theorem 3oalem6 31188
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oa.1 𝐴C
3oa.2 𝐵C
3oa.3 𝐶C
3oa.4 𝑅 = ((⊥‘𝐵) ∩ (𝐵 𝐴))
3oa.5 𝑆 = ((⊥‘𝐶) ∩ (𝐶 𝐴))
Assertion
Ref Expression
3oalem6 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))

Proof of Theorem 3oalem6
StepHypRef Expression
1 3oa.2 . . . 4 𝐵C
21chshii 30748 . . 3 𝐵S
3 3oa.4 . . . . . 6 𝑅 = ((⊥‘𝐵) ∩ (𝐵 𝐴))
41choccli 30828 . . . . . . 7 (⊥‘𝐵) ∈ C
5 3oa.1 . . . . . . . 8 𝐴C
61, 5chjcli 30978 . . . . . . 7 (𝐵 𝐴) ∈ C
74, 6chincli 30981 . . . . . 6 ((⊥‘𝐵) ∩ (𝐵 𝐴)) ∈ C
83, 7eqeltri 2828 . . . . 5 𝑅C
98chshii 30748 . . . 4 𝑅S
10 3oa.5 . . . . . . 7 𝑆 = ((⊥‘𝐶) ∩ (𝐶 𝐴))
11 3oa.3 . . . . . . . . 9 𝐶C
1211choccli 30828 . . . . . . . 8 (⊥‘𝐶) ∈ C
1311, 5chjcli 30978 . . . . . . . 8 (𝐶 𝐴) ∈ C
1412, 13chincli 30981 . . . . . . 7 ((⊥‘𝐶) ∩ (𝐶 𝐴)) ∈ C
1510, 14eqeltri 2828 . . . . . 6 𝑆C
1615chshii 30748 . . . . 5 𝑆S
1711chshii 30748 . . . . . . 7 𝐶S
182, 17shscli 30838 . . . . . 6 (𝐵 + 𝐶) ∈ S
199, 16shscli 30838 . . . . . 6 (𝑅 + 𝑆) ∈ S
2018, 19shincli 30883 . . . . 5 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
2116, 20shscli 30838 . . . 4 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
229, 21shincli 30883 . . 3 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
232, 22shsleji 30891 . 2 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
2416, 20shsleji 30891 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
251, 11chsleji 30979 . . . . . . . 8 (𝐵 + 𝐶) ⊆ (𝐵 𝐶)
26 ssrin 4233 . . . . . . . 8 ((𝐵 + 𝐶) ⊆ (𝐵 𝐶) → ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 + 𝑆)))
2725, 26ax-mp 5 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 + 𝑆))
288, 15chsleji 30979 . . . . . . . 8 (𝑅 + 𝑆) ⊆ (𝑅 𝑆)
29 sslin 4234 . . . . . . . 8 ((𝑅 + 𝑆) ⊆ (𝑅 𝑆) → ((𝐵 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆)))
3028, 29ax-mp 5 . . . . . . 7 ((𝐵 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆))
3127, 30sstri 3991 . . . . . 6 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆))
321, 11chjcli 30978 . . . . . . . . 9 (𝐵 𝐶) ∈ C
338, 15chjcli 30978 . . . . . . . . 9 (𝑅 𝑆) ∈ C
3432, 33chincli 30981 . . . . . . . 8 ((𝐵 𝐶) ∩ (𝑅 𝑆)) ∈ C
3534chshii 30748 . . . . . . 7 ((𝐵 𝐶) ∩ (𝑅 𝑆)) ∈ S
3620, 35, 16shlej2i 30900 . . . . . 6 (((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ⊆ ((𝐵 𝐶) ∩ (𝑅 𝑆)) → (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))
3731, 36ax-mp 5 . . . . 5 (𝑆 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))
3824, 37sstri 3991 . . . 4 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))
39 sslin 4234 . . . 4 ((𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ⊆ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))) → (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
4038, 39ax-mp 5 . . 3 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))
4115, 34chjcli 30978 . . . . . 6 (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))) ∈ C
428, 41chincli 30981 . . . . 5 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) ∈ C
4342chshii 30748 . . . 4 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) ∈ S
4422, 43, 2shlej2i 30900 . . 3 ((𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ⊆ (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))) → (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆))))))
4540, 44ax-mp 5 . 2 (𝐵 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
4623, 45sstri 3991 1 (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ⊆ (𝐵 (𝑅 ∩ (𝑆 ((𝐵 𝐶) ∩ (𝑅 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  cin 3947  wss 3948  cfv 6543  (class class class)co 7412   C cch 30450  cort 30451   + cph 30452   chj 30454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193  ax-hilex 30520  ax-hfvadd 30521  ax-hvcom 30522  ax-hvass 30523  ax-hv0cl 30524  ax-hvaddid 30525  ax-hfvmul 30526  ax-hvmulid 30527  ax-hvmulass 30528  ax-hvdistr1 30529  ax-hvdistr2 30530  ax-hvmul0 30531  ax-hfi 30600  ax-his1 30603  ax-his2 30604  ax-his3 30605  ax-his4 30606  ax-hcompl 30723
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cn 22952  df-cnp 22953  df-lm 22954  df-haus 23040  df-tx 23287  df-hmeo 23480  df-xms 24047  df-ms 24048  df-tms 24049  df-cau 25005  df-grpo 30014  df-gid 30015  df-ginv 30016  df-gdiv 30017  df-ablo 30066  df-vc 30080  df-nv 30113  df-va 30116  df-ba 30117  df-sm 30118  df-0v 30119  df-vs 30120  df-nmcv 30121  df-ims 30122  df-dip 30222  df-hnorm 30489  df-hvsub 30492  df-hlim 30493  df-hcau 30494  df-sh 30728  df-ch 30742  df-oc 30773  df-shs 30829  df-chj 30831
This theorem is referenced by:  3oai  31189
  Copyright terms: Public domain W3C validator