![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltne | Structured version Visualization version GIF version |
Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
sltne | ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltirr 27238 | . . . 4 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | |
2 | breq2 5151 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴 <s 𝐵 ↔ 𝐴 <s 𝐴)) | |
3 | 2 | notbid 317 | . . . 4 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐴 <s 𝐴)) |
4 | 1, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ No → (𝐵 = 𝐴 → ¬ 𝐴 <s 𝐵)) |
5 | 4 | necon2ad 2955 | . 2 ⊢ (𝐴 ∈ No → (𝐴 <s 𝐵 → 𝐵 ≠ 𝐴)) |
6 | 5 | imp 407 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 No csur 27132 <s cslt 27133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 |
This theorem is referenced by: sgt0ne0 27324 0elright 27393 |
Copyright terms: Public domain | W3C validator |