![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elright | Structured version Visualization version GIF version |
Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
0elright.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
0elright.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
Ref | Expression |
---|---|
0elright | ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elright.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | 0elright.2 | . . . . 5 ⊢ (𝜑 → 𝐴 <s 0s ) | |
3 | sltne 27833 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 0s ) → 0s ≠ 𝐴) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 0s ≠ 𝐴) |
5 | 4 | necomd 3002 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0s ) |
6 | 1, 5 | 0elold 27965 | . 2 ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
7 | breq2 5170 | . . 3 ⊢ (𝑥 = 0s → (𝐴 <s 𝑥 ↔ 𝐴 <s 0s )) | |
8 | rightval 27921 | . . 3 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | |
9 | 7, 8 | elrab2 3711 | . 2 ⊢ ( 0s ∈ ( R ‘𝐴) ↔ ( 0s ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 0s )) |
10 | 6, 2, 9 | sylanbrc 582 | 1 ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 No csur 27702 <s cslt 27703 bday cbday 27704 0s c0s 27885 O cold 27900 R cright 27903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |