![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elright | Structured version Visualization version GIF version |
Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
0elright.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
0elright.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
Ref | Expression |
---|---|
0elright | ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elright.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | 0elright.2 | . . . . 5 ⊢ (𝜑 → 𝐴 <s 0s ) | |
3 | sltne 27270 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 0s ) → 0s ≠ 𝐴) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 0s ≠ 𝐴) |
5 | 4 | necomd 2996 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0s ) |
6 | 1, 5 | 0elold 27399 | . 2 ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
7 | breq2 5152 | . . 3 ⊢ (𝑥 = 0s → (𝐴 <s 𝑥 ↔ 𝐴 <s 0s )) | |
8 | rightval 27356 | . . 3 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | |
9 | 7, 8 | elrab2 3686 | . 2 ⊢ ( 0s ∈ ( R ‘𝐴) ↔ ( 0s ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 0s )) |
10 | 6, 2, 9 | sylanbrc 583 | 1 ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 ‘cfv 6543 No csur 27140 <s cslt 27141 bday cbday 27142 0s c0s 27320 O cold 27335 R cright 27338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 df-bday 27145 df-sslt 27280 df-scut 27282 df-0s 27322 df-made 27339 df-old 27340 df-left 27342 df-right 27343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |