![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elright | Structured version Visualization version GIF version |
Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
0elright.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
0elright.2 | ⊢ (𝜑 → 𝐴 <s 0s ) |
Ref | Expression |
---|---|
0elright | ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elright.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | 0elright.2 | . . . . 5 ⊢ (𝜑 → 𝐴 <s 0s ) | |
3 | sltne 27749 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 0s ) → 0s ≠ 𝐴) | |
4 | 1, 2, 3 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 0s ≠ 𝐴) |
5 | 4 | necomd 2985 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0s ) |
6 | 1, 5 | 0elold 27881 | . 2 ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) |
7 | breq2 5153 | . . 3 ⊢ (𝑥 = 0s → (𝐴 <s 𝑥 ↔ 𝐴 <s 0s )) | |
8 | rightval 27837 | . . 3 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | |
9 | 7, 8 | elrab2 3682 | . 2 ⊢ ( 0s ∈ ( R ‘𝐴) ↔ ( 0s ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 0s )) |
10 | 6, 2, 9 | sylanbrc 581 | 1 ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 No csur 27618 <s cslt 27619 bday cbday 27620 0s c0s 27801 O cold 27816 R cright 27819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-no 27621 df-slt 27622 df-bday 27623 df-sslt 27760 df-scut 27762 df-0s 27803 df-made 27820 df-old 27821 df-left 27823 df-right 27824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |