| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgt0ne0 | Structured version Visualization version GIF version | ||
| Description: A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| sgt0ne0 | ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27770 | . 2 ⊢ 0s ∈ No | |
| 2 | sltne 27709 | . 2 ⊢ (( 0s ∈ No ∧ 0s <s 𝐴) → 𝐴 ≠ 0s ) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 No csur 27578 <s cslt 27579 0s c0s 27766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-0s 27768 |
| This theorem is referenced by: sgt0ne0d 27780 1sne0s 27781 elnns2 28269 elnnzs 28325 |
| Copyright terms: Public domain | W3C validator |