| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrrx2linest2 | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2linest2.i | ⊢ 𝐼 = {1, 2} |
| rrx2linest2.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrx2linest2.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2linest2.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrx2linest2.a | ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) |
| rrx2linest2.b | ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) |
| rrx2linest2.c | ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) |
| Ref | Expression |
|---|---|
| elrrx2linest2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2linest2.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 2 | rrx2linest2.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 3 | rrx2linest2.p | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 4 | rrx2linest2.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 5 | rrx2linest2.a | . . . 4 ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) | |
| 6 | rrx2linest2.b | . . . 4 ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) | |
| 7 | rrx2linest2.c | . . . 4 ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 48691 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
| 9 | 8 | eleq2d 2821 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ 𝐺 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
| 10 | fveq1 6880 | . . . . . 6 ⊢ (𝑝 = 𝐺 → (𝑝‘1) = (𝐺‘1)) | |
| 11 | 10 | oveq2d 7426 | . . . . 5 ⊢ (𝑝 = 𝐺 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝐺‘1))) |
| 12 | fveq1 6880 | . . . . . 6 ⊢ (𝑝 = 𝐺 → (𝑝‘2) = (𝐺‘2)) | |
| 13 | 12 | oveq2d 7426 | . . . . 5 ⊢ (𝑝 = 𝐺 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝐺‘2))) |
| 14 | 11, 13 | oveq12d 7428 | . . . 4 ⊢ (𝑝 = 𝐺 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2)))) |
| 15 | 14 | eqeq1d 2738 | . . 3 ⊢ (𝑝 = 𝐺 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶)) |
| 16 | 15 | elrab 3676 | . 2 ⊢ (𝐺 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶)) |
| 17 | 9, 16 | bitrdi 287 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 {cpr 4608 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℝcr 11133 1c1 11135 + caddc 11137 · cmul 11139 − cmin 11471 2c2 12300 ℝ^crrx 25340 LineMcline 48674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-prds 17466 df-pws 17468 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-ghm 19201 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-field 20697 df-staf 20804 df-srng 20805 df-lmod 20824 df-lss 20894 df-sra 21136 df-rgmod 21137 df-cnfld 21321 df-refld 21570 df-dsmm 21697 df-frlm 21712 df-tng 24528 df-tcph 25126 df-rrx 25342 df-line 48676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |