Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrrx2linest2 | Structured version Visualization version GIF version |
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
Ref | Expression |
---|---|
rrx2linest2.i | ⊢ 𝐼 = {1, 2} |
rrx2linest2.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
rrx2linest2.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2linest2.l | ⊢ 𝐿 = (LineM‘𝐸) |
rrx2linest2.a | ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) |
rrx2linest2.b | ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) |
rrx2linest2.c | ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) |
Ref | Expression |
---|---|
elrrx2linest2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2linest2.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
2 | rrx2linest2.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
3 | rrx2linest2.p | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
4 | rrx2linest2.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
5 | rrx2linest2.a | . . . 4 ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) | |
6 | rrx2linest2.b | . . . 4 ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) | |
7 | rrx2linest2.c | . . . 4 ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | rrx2linest2 45796 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) |
9 | 8 | eleq2d 2825 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ 𝐺 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})) |
10 | fveq1 6737 | . . . . . 6 ⊢ (𝑝 = 𝐺 → (𝑝‘1) = (𝐺‘1)) | |
11 | 10 | oveq2d 7250 | . . . . 5 ⊢ (𝑝 = 𝐺 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝐺‘1))) |
12 | fveq1 6737 | . . . . . 6 ⊢ (𝑝 = 𝐺 → (𝑝‘2) = (𝐺‘2)) | |
13 | 12 | oveq2d 7250 | . . . . 5 ⊢ (𝑝 = 𝐺 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝐺‘2))) |
14 | 11, 13 | oveq12d 7252 | . . . 4 ⊢ (𝑝 = 𝐺 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2)))) |
15 | 14 | eqeq1d 2741 | . . 3 ⊢ (𝑝 = 𝐺 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶)) |
16 | 15 | elrab 3616 | . 2 ⊢ (𝐺 ∈ {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶)) |
17 | 9, 16 | bitrdi 290 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2942 {crab 3067 {cpr 4559 ‘cfv 6400 (class class class)co 7234 ↑m cmap 8531 ℝcr 10755 1c1 10757 + caddc 10759 · cmul 10761 − cmin 11089 2c2 11912 ℝ^crrx 24309 LineMcline 45779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 ax-pre-sup 10834 ax-addf 10835 ax-mulf 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-tpos 7991 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9013 df-sup 9085 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-div 11517 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-7 11925 df-8 11926 df-9 11927 df-n0 12118 df-z 12204 df-dec 12321 df-uz 12466 df-rp 12614 df-fz 13123 df-seq 13604 df-exp 13665 df-cj 14692 df-re 14693 df-im 14694 df-sqrt 14828 df-abs 14829 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-ress 16815 df-plusg 16845 df-mulr 16846 df-starv 16847 df-sca 16848 df-vsca 16849 df-ip 16850 df-tset 16851 df-ple 16852 df-ds 16854 df-unif 16855 df-hom 16856 df-cco 16857 df-0g 16976 df-prds 16982 df-pws 16984 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-mhm 18248 df-grp 18398 df-minusg 18399 df-sbg 18400 df-subg 18570 df-ghm 18650 df-cmn 19202 df-mgp 19535 df-ur 19547 df-ring 19594 df-cring 19595 df-oppr 19671 df-dvdsr 19689 df-unit 19690 df-invr 19720 df-dvr 19731 df-rnghom 19765 df-drng 19799 df-field 19800 df-subrg 19828 df-staf 19911 df-srng 19912 df-lmod 19931 df-lss 19999 df-sra 20239 df-rgmod 20240 df-cnfld 20394 df-refld 20597 df-dsmm 20724 df-frlm 20739 df-tng 23511 df-tcph 24095 df-rrx 24311 df-line 45781 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |