MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcss1 Structured version   Visualization version   GIF version

Theorem subcss1 17751
Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcss1.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcss1.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcss1.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
subcss1 (𝜑𝑆𝐵)

Proof of Theorem subcss1
StepHypRef Expression
1 subcss1.2 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
2 eqid 2733 . . . 4 (Homf𝐶) = (Homf𝐶)
3 subcss1.b . . . 4 𝐵 = (Base‘𝐶)
42, 3homffn 17601 . . 3 (Homf𝐶) Fn (𝐵 × 𝐵)
54a1i 11 . 2 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
6 subcss1.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
76, 2subcssc 17749 . 2 (𝜑𝐽cat (Homf𝐶))
81, 5, 7ssc1 17730 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898   × cxp 5617   Fn wfn 6481  cfv 6486  Basecbs 17122  Homf chomf 17574  Subcatcsubc 17718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-pm 8759  df-ixp 8828  df-homf 17578  df-ssc 17719  df-subc 17721
This theorem is referenced by:  subcss2  17752  subccatid  17755  subsubc  17762  funcres  17805  funcres2b  17806  funcres2  17807  idfusubc  17809  subthinc  49568
  Copyright terms: Public domain W3C validator