Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcss1 | Structured version Visualization version GIF version |
Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcss1.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
subcss1 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcss1.2 | . 2 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
2 | eqid 2737 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
3 | subcss1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | homffn 17499 | . . 3 ⊢ (Homf ‘𝐶) Fn (𝐵 × 𝐵) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (Homf ‘𝐶) Fn (𝐵 × 𝐵)) |
6 | subcss1.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
7 | 6, 2 | subcssc 17652 | . 2 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
8 | 1, 5, 7 | ssc1 17630 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 × cxp 5622 Fn wfn 6478 ‘cfv 6483 Basecbs 17009 Homf chomf 17472 Subcatcsubc 17618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-pm 8693 df-ixp 8761 df-homf 17476 df-ssc 17619 df-subc 17621 |
This theorem is referenced by: subcss2 17655 subccatid 17658 subsubc 17665 funcres 17708 funcres2b 17709 funcres2 17710 idfusubc 45842 subthinc 46739 |
Copyright terms: Public domain | W3C validator |