MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcss1 Structured version   Visualization version   GIF version

Theorem subcss1 17746
Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcss1.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcss1.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcss1.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
subcss1 (𝜑𝑆𝐵)

Proof of Theorem subcss1
StepHypRef Expression
1 subcss1.2 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
2 eqid 2731 . . . 4 (Homf𝐶) = (Homf𝐶)
3 subcss1.b . . . 4 𝐵 = (Base‘𝐶)
42, 3homffn 17596 . . 3 (Homf𝐶) Fn (𝐵 × 𝐵)
54a1i 11 . 2 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
6 subcss1.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
76, 2subcssc 17744 . 2 (𝜑𝐽cat (Homf𝐶))
81, 5, 7ssc1 17725 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3902   × cxp 5614   Fn wfn 6476  cfv 6481  Basecbs 17117  Homf chomf 17569  Subcatcsubc 17713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-pm 8753  df-ixp 8822  df-homf 17573  df-ssc 17714  df-subc 17716
This theorem is referenced by:  subcss2  17747  subccatid  17750  subsubc  17757  funcres  17800  funcres2b  17801  funcres2  17802  idfusubc  17804  subthinc  49474
  Copyright terms: Public domain W3C validator