MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcss1 Structured version   Visualization version   GIF version

Theorem subcss1 17853
Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcss1.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcss1.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcss1.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
subcss1 (𝜑𝑆𝐵)

Proof of Theorem subcss1
StepHypRef Expression
1 subcss1.2 . 2 (𝜑𝐽 Fn (𝑆 × 𝑆))
2 eqid 2735 . . . 4 (Homf𝐶) = (Homf𝐶)
3 subcss1.b . . . 4 𝐵 = (Base‘𝐶)
42, 3homffn 17703 . . 3 (Homf𝐶) Fn (𝐵 × 𝐵)
54a1i 11 . 2 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
6 subcss1.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
76, 2subcssc 17851 . 2 (𝜑𝐽cat (Homf𝐶))
81, 5, 7ssc1 17832 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926   × cxp 5652   Fn wfn 6525  cfv 6530  Basecbs 17226  Homf chomf 17676  Subcatcsubc 17820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-pm 8841  df-ixp 8910  df-homf 17680  df-ssc 17821  df-subc 17823
This theorem is referenced by:  subcss2  17854  subccatid  17857  subsubc  17864  funcres  17907  funcres2b  17908  funcres2  17909  idfusubc  17911  subthinc  49277
  Copyright terms: Public domain W3C validator