Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fouriercn Structured version   Visualization version   GIF version

Theorem fouriercn 46261
Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 46251 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fouriercn.f (𝜑𝐹:ℝ⟶ℝ)
fouriercn.t 𝑇 = (2 · π)
fouriercn.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fouriercn.dv (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
fouriercn.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fouriercn.x (𝜑𝑋 ∈ ℝ)
fouriercn.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fouriercn.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fouriercn (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝐺   𝑥,𝑇   𝑛,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem fouriercn
StepHypRef Expression
1 fouriercn.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fouriercn.t . 2 𝑇 = (2 · π)
3 fouriercn.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fouriercn.g . 2 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
54dmeqi 5884 . . . . . 6 dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π))
6 ioossre 13424 . . . . . . . 8 (-π(,)π) ⊆ ℝ
7 fouriercn.dv . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
8 cncff 24837 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ)
9 fdm 6715 . . . . . . . . 9 ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐹) = ℝ)
116, 10sseqtrrid 4002 . . . . . . 7 (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹))
12 ssdmres 6000 . . . . . . 7 ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
1311, 12sylib 218 . . . . . 6 (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
145, 13eqtrid 2782 . . . . 5 (𝜑 → dom 𝐺 = (-π(,)π))
1514difeq2d 4101 . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π)))
16 difid 4351 . . . 4 ((-π(,)π) ∖ (-π(,)π)) = ∅
1715, 16eqtrdi 2786 . . 3 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅)
18 0fi 9056 . . 3 ∅ ∈ Fin
1917, 18eqeltrdi 2842 . 2 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
20 rescncf 24841 . . . 4 ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)))
216, 7, 20mpsyl 68 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))
224a1i 11 . . 3 (𝜑𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)))
2314oveq1d 7420 . . 3 (𝜑 → (dom 𝐺cn→ℂ) = ((-π(,)π)–cn→ℂ))
2421, 22, 233eltr4d 2849 . 2 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
25 pire 26418 . . . . . 6 π ∈ ℝ
2625renegcli 11544 . . . . 5 -π ∈ ℝ
2725rexri 11293 . . . . 5 π ∈ ℝ*
28 icossre 13445 . . . . 5 ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ)
2926, 27, 28mp2an 692 . . . 4 (-π[,)π) ⊆ ℝ
30 eldifi 4106 . . . 4 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π))
3129, 30sselid 3956 . . 3 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
32 limcresi 25838 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥)
334reseq1i 5962 . . . . . . . 8 (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞))
34 resres 5979 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞)))
3533, 34eqtr2i 2759 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞))
3635oveq1i 7415 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
3732, 36sseqtri 4007 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
387adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
39 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
4038, 39cnlimci 25842 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) lim 𝑥))
4137, 40sselid 3956 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥))
4241ne0d 4317 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
4331, 42sylan2 593 . 2 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
44 negpitopissre 26501 . . . 4 (-π(,]π) ⊆ ℝ
45 eldifi 4106 . . . 4 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π))
4644, 45sselid 3956 . . 3 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
47 limcresi 25838 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥)
484reseq1i 5962 . . . . . . . 8 (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥))
49 resres 5979 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥)))
5048, 49eqtr2i 2759 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥))
5150oveq1i 7415 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5247, 51sseqtri 4007 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5352, 40sselid 3956 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥))
5453ne0d 4317 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
5546, 54sylan2 593 . 2 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
56 eqid 2735 . 2 (topGen‘ran (,)) = (topGen‘ran (,))
57 ax-resscn 11186 . . . . . . 7 ℝ ⊆ ℂ
5857a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
591, 58fssd 6723 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
60 ssid 3981 . . . . . . . 8 ℝ ⊆ ℝ
6160a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ)
62 dvcn 25875 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ))
6358, 59, 61, 10, 62syl31anc 1375 . . . . . 6 (𝜑𝐹 ∈ (ℝ–cn→ℂ))
64 cncfcdm 24842 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
6558, 63, 64syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
661, 65mpbird 257 . . . 4 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
67 eqid 2735 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
68 tgioo4 24744 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6967, 68, 68cncfcn 24854 . . . . 5 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7058, 58, 69syl2anc 584 . . . 4 (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7166, 70eleqtrd 2836 . . 3 (𝜑𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
72 fouriercn.x . . 3 (𝜑𝑋 ∈ ℝ)
73 uniretop 24701 . . . 4 ℝ = (topGen‘ran (,))
7473cncnpi 23216 . . 3 ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
7571, 72, 74syl2anc 584 . 2 (𝜑𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
76 fouriercn.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
77 fouriercn.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
781, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77fouriercnp 46255 1 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cin 3925  wss 3926  c0 4308  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  (,)cioo 13362  (,]cioc 13363  [,)cico 13364  Σcsu 15702  sincsin 16079  cosccos 16080  πcpi 16082  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315   Cn ccn 23162   CnP ccnp 23163  cnccncf 24820  citg 25571   lim climc 25815   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-t1 23252  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-ditg 25800  df-limc 25819  df-dv 25820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator