| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercn | Structured version Visualization version GIF version | ||
| Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 46382 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fouriercn.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| fouriercn.t | ⊢ 𝑇 = (2 · π) |
| fouriercn.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| fouriercn.dv | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
| fouriercn.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
| fouriercn.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fouriercn.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fouriercn.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
| Ref | Expression |
|---|---|
| fouriercn | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fouriercn.f | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 2 | fouriercn.t | . 2 ⊢ 𝑇 = (2 · π) | |
| 3 | fouriercn.per | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 4 | fouriercn.g | . 2 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 5 | 4 | dmeqi 5850 | . . . . . 6 ⊢ dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π)) |
| 6 | ioossre 13314 | . . . . . . . 8 ⊢ (-π(,)π) ⊆ ℝ | |
| 7 | fouriercn.dv | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) | |
| 8 | cncff 24833 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ) | |
| 9 | fdm 6668 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝐹) = ℝ) |
| 11 | 6, 10 | sseqtrrid 3974 | . . . . . . 7 ⊢ (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹)) |
| 12 | ssdmres 5969 | . . . . . . 7 ⊢ ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) | |
| 13 | 11, 12 | sylib 218 | . . . . . 6 ⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) |
| 14 | 5, 13 | eqtrid 2780 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = (-π(,)π)) |
| 15 | 14 | difeq2d 4075 | . . . 4 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π))) |
| 16 | difid 4325 | . . . 4 ⊢ ((-π(,)π) ∖ (-π(,)π)) = ∅ | |
| 17 | 15, 16 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅) |
| 18 | 0fi 8975 | . . 3 ⊢ ∅ ∈ Fin | |
| 19 | 17, 18 | eqeltrdi 2841 | . 2 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
| 20 | rescncf 24837 | . . . 4 ⊢ ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))) | |
| 21 | 6, 7, 20 | mpsyl 68 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)) |
| 22 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))) |
| 23 | 14 | oveq1d 7370 | . . 3 ⊢ (𝜑 → (dom 𝐺–cn→ℂ) = ((-π(,)π)–cn→ℂ)) |
| 24 | 21, 22, 23 | 3eltr4d 2848 | . 2 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
| 25 | pire 26413 | . . . . . 6 ⊢ π ∈ ℝ | |
| 26 | 25 | renegcli 11433 | . . . . 5 ⊢ -π ∈ ℝ |
| 27 | 25 | rexri 11181 | . . . . 5 ⊢ π ∈ ℝ* |
| 28 | icossre 13335 | . . . . 5 ⊢ ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ) | |
| 29 | 26, 27, 28 | mp2an 692 | . . . 4 ⊢ (-π[,)π) ⊆ ℝ |
| 30 | eldifi 4080 | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π)) | |
| 31 | 29, 30 | sselid 3928 | . . 3 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
| 32 | limcresi 25833 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) | |
| 33 | 4 | reseq1i 5931 | . . . . . . . 8 ⊢ (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) |
| 34 | resres 5948 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) | |
| 35 | 33, 34 | eqtr2i 2757 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞)) |
| 36 | 35 | oveq1i 7365 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
| 37 | 32, 36 | sseqtri 3979 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
| 38 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
| 39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 40 | 38, 39 | cnlimci 25837 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) limℂ 𝑥)) |
| 41 | 37, 40 | sselid 3928 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥)) |
| 42 | 41 | ne0d 4291 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 43 | 31, 42 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 44 | negpitopissre 26496 | . . . 4 ⊢ (-π(,]π) ⊆ ℝ | |
| 45 | eldifi 4080 | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π)) | |
| 46 | 44, 45 | sselid 3928 | . . 3 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
| 47 | limcresi 25833 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) | |
| 48 | 4 | reseq1i 5931 | . . . . . . . 8 ⊢ (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) |
| 49 | resres 5948 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) | |
| 50 | 48, 49 | eqtr2i 2757 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥)) |
| 51 | 50 | oveq1i 7365 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
| 52 | 47, 51 | sseqtri 3979 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
| 53 | 52, 40 | sselid 3928 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥)) |
| 54 | 53 | ne0d 4291 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 55 | 46, 54 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 56 | eqid 2733 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 57 | ax-resscn 11074 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 58 | 57 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 59 | 1, 58 | fssd 6676 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 60 | ssid 3953 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ | |
| 61 | 60 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) |
| 62 | dvcn 25870 | . . . . . . 7 ⊢ (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ)) | |
| 63 | 58, 59, 61, 10, 62 | syl31anc 1375 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℂ)) |
| 64 | cncfcdm 24838 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) | |
| 65 | 58, 63, 64 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) |
| 66 | 1, 65 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
| 67 | eqid 2733 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 68 | tgioo4 24740 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 69 | 67, 68, 68 | cncfcn 24850 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
| 70 | 58, 58, 69 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
| 71 | 66, 70 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
| 72 | fouriercn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 73 | uniretop 24697 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 74 | 73 | cncnpi 23213 | . . 3 ⊢ ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
| 75 | 71, 72, 74 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
| 76 | fouriercn.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 77 | fouriercn.b | . 2 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 78 | 1, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77 | fouriercnp 46386 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ↦ cmpt 5176 dom cdm 5621 ran crn 5622 ↾ cres 5623 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 ℂcc 11015 ℝcr 11016 0cc0 11017 + caddc 11020 · cmul 11022 +∞cpnf 11154 -∞cmnf 11155 ℝ*cxr 11156 -cneg 11356 / cdiv 11785 ℕcn 12136 2c2 12191 ℕ0cn0 12392 (,)cioo 13252 (,]cioc 13253 [,)cico 13254 Σcsu 15600 sincsin 15977 cosccos 15978 πcpi 15980 TopOpenctopn 17332 topGenctg 17348 ℂfldccnfld 21300 Cn ccn 23159 CnP ccnp 23160 –cn→ccncf 24816 ∫citg 25566 limℂ climc 25810 D cdv 25811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-symdif 4202 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 df-sin 15983 df-cos 15984 df-pi 15986 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lp 23071 df-perf 23072 df-cn 23162 df-cnp 23163 df-t1 23249 df-haus 23250 df-cmp 23322 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-xms 24255 df-ms 24256 df-tms 24257 df-cncf 24818 df-ovol 25412 df-vol 25413 df-mbf 25567 df-itg1 25568 df-itg2 25569 df-ibl 25570 df-itg 25571 df-0p 25618 df-ditg 25795 df-limc 25814 df-dv 25815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |