Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercn | Structured version Visualization version GIF version |
Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 43763 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercn.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercn.t | ⊢ 𝑇 = (2 · π) |
fouriercn.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercn.dv | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
fouriercn.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercn.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fouriercn.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercn.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercn | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercn.f | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercn.t | . 2 ⊢ 𝑇 = (2 · π) | |
3 | fouriercn.per | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercn.g | . 2 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | 4 | dmeqi 5813 | . . . . . 6 ⊢ dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π)) |
6 | ioossre 13140 | . . . . . . . 8 ⊢ (-π(,)π) ⊆ ℝ | |
7 | fouriercn.dv | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) | |
8 | cncff 24056 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ) | |
9 | fdm 6609 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝐹) = ℝ) |
11 | 6, 10 | sseqtrrid 3974 | . . . . . . 7 ⊢ (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹)) |
12 | ssdmres 5914 | . . . . . . 7 ⊢ ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) | |
13 | 11, 12 | sylib 217 | . . . . . 6 ⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) |
14 | 5, 13 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = (-π(,)π)) |
15 | 14 | difeq2d 4057 | . . . 4 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π))) |
16 | difid 4304 | . . . 4 ⊢ ((-π(,)π) ∖ (-π(,)π)) = ∅ | |
17 | 15, 16 | eqtrdi 2794 | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅) |
18 | 0fin 8954 | . . 3 ⊢ ∅ ∈ Fin | |
19 | 17, 18 | eqeltrdi 2847 | . 2 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
20 | rescncf 24060 | . . . 4 ⊢ ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))) | |
21 | 6, 7, 20 | mpsyl 68 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)) |
22 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))) |
23 | 14 | oveq1d 7290 | . . 3 ⊢ (𝜑 → (dom 𝐺–cn→ℂ) = ((-π(,)π)–cn→ℂ)) |
24 | 21, 22, 23 | 3eltr4d 2854 | . 2 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
25 | pire 25615 | . . . . . 6 ⊢ π ∈ ℝ | |
26 | 25 | renegcli 11282 | . . . . 5 ⊢ -π ∈ ℝ |
27 | 25 | rexri 11033 | . . . . 5 ⊢ π ∈ ℝ* |
28 | icossre 13160 | . . . . 5 ⊢ ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ) | |
29 | 26, 27, 28 | mp2an 689 | . . . 4 ⊢ (-π[,)π) ⊆ ℝ |
30 | eldifi 4061 | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π)) | |
31 | 29, 30 | sselid 3919 | . . 3 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
32 | limcresi 25049 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) | |
33 | 4 | reseq1i 5887 | . . . . . . . 8 ⊢ (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) |
34 | resres 5904 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) | |
35 | 33, 34 | eqtr2i 2767 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞)) |
36 | 35 | oveq1i 7285 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
37 | 32, 36 | sseqtri 3957 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
38 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
39 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
40 | 38, 39 | cnlimci 25053 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) limℂ 𝑥)) |
41 | 37, 40 | sselid 3919 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥)) |
42 | 41 | ne0d 4269 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
43 | 31, 42 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
44 | negpitopissre 25696 | . . . 4 ⊢ (-π(,]π) ⊆ ℝ | |
45 | eldifi 4061 | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π)) | |
46 | 44, 45 | sselid 3919 | . . 3 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
47 | limcresi 25049 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) | |
48 | 4 | reseq1i 5887 | . . . . . . . 8 ⊢ (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) |
49 | resres 5904 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) | |
50 | 48, 49 | eqtr2i 2767 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥)) |
51 | 50 | oveq1i 7285 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
52 | 47, 51 | sseqtri 3957 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
53 | 52, 40 | sselid 3919 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥)) |
54 | 53 | ne0d 4269 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
55 | 46, 54 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
56 | eqid 2738 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
57 | ax-resscn 10928 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
58 | 57 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
59 | 1, 58 | fssd 6618 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
60 | ssid 3943 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ | |
61 | 60 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) |
62 | dvcn 25085 | . . . . . . 7 ⊢ (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ)) | |
63 | 58, 59, 61, 10, 62 | syl31anc 1372 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℂ)) |
64 | cncffvrn 24061 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) | |
65 | 58, 63, 64 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) |
66 | 1, 65 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
67 | eqid 2738 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
68 | 67 | tgioo2 23966 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
69 | 67, 68, 68 | cncfcn 24073 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
70 | 58, 58, 69 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
71 | 66, 70 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
72 | fouriercn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
73 | uniretop 23926 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
74 | 73 | cncnpi 22429 | . . 3 ⊢ ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
75 | 71, 72, 74 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
76 | fouriercn.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
77 | fouriercn.b | . 2 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
78 | 1, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77 | fouriercnp 43767 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℂcc 10869 ℝcr 10870 0cc0 10871 + caddc 10874 · cmul 10876 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 -cneg 11206 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 (,)cioo 13079 (,]cioc 13080 [,)cico 13081 Σcsu 15397 sincsin 15773 cosccos 15774 πcpi 15776 TopOpenctopn 17132 topGenctg 17148 ℂfldccnfld 20597 Cn ccn 22375 CnP ccnp 22376 –cn→ccncf 24039 ∫citg 24782 limℂ climc 25026 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-t1 22465 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-ovol 24628 df-vol 24629 df-mbf 24783 df-itg1 24784 df-itg2 24785 df-ibl 24786 df-itg 24787 df-0p 24834 df-ditg 25011 df-limc 25030 df-dv 25031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |