Step | Hyp | Ref
| Expression |
1 | | fouriercn.f |
. 2
β’ (π β πΉ:ββΆβ) |
2 | | fouriercn.t |
. 2
β’ π = (2 Β·
Ο) |
3 | | fouriercn.per |
. 2
β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
4 | | fouriercn.g |
. 2
β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) |
5 | 4 | dmeqi 5904 |
. . . . . 6
β’ dom πΊ = dom ((β D πΉ) βΎ
(-Ο(,)Ο)) |
6 | | ioossre 13384 |
. . . . . . . 8
β’
(-Ο(,)Ο) β β |
7 | | fouriercn.dv |
. . . . . . . . 9
β’ (π β (β D πΉ) β (ββcnββ)) |
8 | | cncff 24408 |
. . . . . . . . 9
β’ ((β
D πΉ) β
(ββcnββ) β
(β D πΉ):ββΆβ) |
9 | | fdm 6726 |
. . . . . . . . 9
β’ ((β
D πΉ):ββΆβ
β dom (β D πΉ) =
β) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . 8
β’ (π β dom (β D πΉ) = β) |
11 | 6, 10 | sseqtrrid 4035 |
. . . . . . 7
β’ (π β (-Ο(,)Ο) β dom
(β D πΉ)) |
12 | | ssdmres 6004 |
. . . . . . 7
β’
((-Ο(,)Ο) β dom (β D πΉ) β dom ((β D πΉ) βΎ (-Ο(,)Ο)) =
(-Ο(,)Ο)) |
13 | 11, 12 | sylib 217 |
. . . . . 6
β’ (π β dom ((β D πΉ) βΎ (-Ο(,)Ο)) =
(-Ο(,)Ο)) |
14 | 5, 13 | eqtrid 2784 |
. . . . 5
β’ (π β dom πΊ = (-Ο(,)Ο)) |
15 | 14 | difeq2d 4122 |
. . . 4
β’ (π β ((-Ο(,)Ο) β
dom πΊ) = ((-Ο(,)Ο)
β (-Ο(,)Ο))) |
16 | | difid 4370 |
. . . 4
β’
((-Ο(,)Ο) β (-Ο(,)Ο)) = β
|
17 | 15, 16 | eqtrdi 2788 |
. . 3
β’ (π β ((-Ο(,)Ο) β
dom πΊ) =
β
) |
18 | | 0fin 9170 |
. . 3
β’ β
β Fin |
19 | 17, 18 | eqeltrdi 2841 |
. 2
β’ (π β ((-Ο(,)Ο) β
dom πΊ) β
Fin) |
20 | | rescncf 24412 |
. . . 4
β’
((-Ο(,)Ο) β β β ((β D πΉ) β (ββcnββ) β ((β D πΉ) βΎ (-Ο(,)Ο)) β
((-Ο(,)Ο)βcnββ))) |
21 | 6, 7, 20 | mpsyl 68 |
. . 3
β’ (π β ((β D πΉ) βΎ (-Ο(,)Ο)) β
((-Ο(,)Ο)βcnββ)) |
22 | 4 | a1i 11 |
. . 3
β’ (π β πΊ = ((β D πΉ) βΎ (-Ο(,)Ο))) |
23 | 14 | oveq1d 7423 |
. . 3
β’ (π β (dom πΊβcnββ) = ((-Ο(,)Ο)βcnββ)) |
24 | 21, 22, 23 | 3eltr4d 2848 |
. 2
β’ (π β πΊ β (dom πΊβcnββ)) |
25 | | pire 25967 |
. . . . . 6
β’ Ο
β β |
26 | 25 | renegcli 11520 |
. . . . 5
β’ -Ο
β β |
27 | 25 | rexri 11271 |
. . . . 5
β’ Ο
β β* |
28 | | icossre 13404 |
. . . . 5
β’ ((-Ο
β β β§ Ο β β*) β (-Ο[,)Ο)
β β) |
29 | 26, 27, 28 | mp2an 690 |
. . . 4
β’
(-Ο[,)Ο) β β |
30 | | eldifi 4126 |
. . . 4
β’ (π₯ β ((-Ο[,)Ο) β
dom πΊ) β π₯ β
(-Ο[,)Ο)) |
31 | 29, 30 | sselid 3980 |
. . 3
β’ (π₯ β ((-Ο[,)Ο) β
dom πΊ) β π₯ β
β) |
32 | | limcresi 25401 |
. . . . . 6
β’ ((β
D πΉ) limβ
π₯) β (((β D
πΉ) βΎ ((-Ο(,)Ο)
β© (π₯(,)+β)))
limβ π₯) |
33 | 4 | reseq1i 5977 |
. . . . . . . 8
β’ (πΊ βΎ (π₯(,)+β)) = (((β D πΉ) βΎ (-Ο(,)Ο))
βΎ (π₯(,)+β)) |
34 | | resres 5994 |
. . . . . . . 8
β’
(((β D πΉ)
βΎ (-Ο(,)Ο)) βΎ (π₯(,)+β)) = ((β D πΉ) βΎ ((-Ο(,)Ο) β© (π₯(,)+β))) |
35 | 33, 34 | eqtr2i 2761 |
. . . . . . 7
β’ ((β
D πΉ) βΎ
((-Ο(,)Ο) β© (π₯(,)+β))) = (πΊ βΎ (π₯(,)+β)) |
36 | 35 | oveq1i 7418 |
. . . . . 6
β’
(((β D πΉ)
βΎ ((-Ο(,)Ο) β© (π₯(,)+β))) limβ π₯) = ((πΊ βΎ (π₯(,)+β)) limβ π₯) |
37 | 32, 36 | sseqtri 4018 |
. . . . 5
β’ ((β
D πΉ) limβ
π₯) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) |
38 | 7 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β β) β (β D πΉ) β (ββcnββ)) |
39 | | simpr 485 |
. . . . . 6
β’ ((π β§ π₯ β β) β π₯ β β) |
40 | 38, 39 | cnlimci 25405 |
. . . . 5
β’ ((π β§ π₯ β β) β ((β D πΉ)βπ₯) β ((β D πΉ) limβ π₯)) |
41 | 37, 40 | sselid 3980 |
. . . 4
β’ ((π β§ π₯ β β) β ((β D πΉ)βπ₯) β ((πΊ βΎ (π₯(,)+β)) limβ π₯)) |
42 | 41 | ne0d 4335 |
. . 3
β’ ((π β§ π₯ β β) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β
) |
43 | 31, 42 | sylan2 593 |
. 2
β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β
) |
44 | | negpitopissre 26048 |
. . . 4
β’
(-Ο(,]Ο) β β |
45 | | eldifi 4126 |
. . . 4
β’ (π₯ β ((-Ο(,]Ο) β
dom πΊ) β π₯ β
(-Ο(,]Ο)) |
46 | 44, 45 | sselid 3980 |
. . 3
β’ (π₯ β ((-Ο(,]Ο) β
dom πΊ) β π₯ β
β) |
47 | | limcresi 25401 |
. . . . . 6
β’ ((β
D πΉ) limβ
π₯) β (((β D
πΉ) βΎ ((-Ο(,)Ο)
β© (-β(,)π₯)))
limβ π₯) |
48 | 4 | reseq1i 5977 |
. . . . . . . 8
β’ (πΊ βΎ (-β(,)π₯)) = (((β D πΉ) βΎ (-Ο(,)Ο))
βΎ (-β(,)π₯)) |
49 | | resres 5994 |
. . . . . . . 8
β’
(((β D πΉ)
βΎ (-Ο(,)Ο)) βΎ (-β(,)π₯)) = ((β D πΉ) βΎ ((-Ο(,)Ο) β©
(-β(,)π₯))) |
50 | 48, 49 | eqtr2i 2761 |
. . . . . . 7
β’ ((β
D πΉ) βΎ
((-Ο(,)Ο) β© (-β(,)π₯))) = (πΊ βΎ (-β(,)π₯)) |
51 | 50 | oveq1i 7418 |
. . . . . 6
β’
(((β D πΉ)
βΎ ((-Ο(,)Ο) β© (-β(,)π₯))) limβ π₯) = ((πΊ βΎ (-β(,)π₯)) limβ π₯) |
52 | 47, 51 | sseqtri 4018 |
. . . . 5
β’ ((β
D πΉ) limβ
π₯) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) |
53 | 52, 40 | sselid 3980 |
. . . 4
β’ ((π β§ π₯ β β) β ((β D πΉ)βπ₯) β ((πΊ βΎ (-β(,)π₯)) limβ π₯)) |
54 | 53 | ne0d 4335 |
. . 3
β’ ((π β§ π₯ β β) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β
) |
55 | 46, 54 | sylan2 593 |
. 2
β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β
) |
56 | | eqid 2732 |
. 2
β’
(topGenβran (,)) = (topGenβran (,)) |
57 | | ax-resscn 11166 |
. . . . . . 7
β’ β
β β |
58 | 57 | a1i 11 |
. . . . . 6
β’ (π β β β
β) |
59 | 1, 58 | fssd 6735 |
. . . . . . 7
β’ (π β πΉ:ββΆβ) |
60 | | ssid 4004 |
. . . . . . . 8
β’ β
β β |
61 | 60 | a1i 11 |
. . . . . . 7
β’ (π β β β
β) |
62 | | dvcn 25437 |
. . . . . . 7
β’
(((β β β β§ πΉ:ββΆβ β§ β
β β) β§ dom (β D πΉ) = β) β πΉ β (ββcnββ)) |
63 | 58, 59, 61, 10, 62 | syl31anc 1373 |
. . . . . 6
β’ (π β πΉ β (ββcnββ)) |
64 | | cncfcdm 24413 |
. . . . . 6
β’ ((β
β β β§ πΉ
β (ββcnββ))
β (πΉ β
(ββcnββ) β
πΉ:ββΆβ)) |
65 | 58, 63, 64 | syl2anc 584 |
. . . . 5
β’ (π β (πΉ β (ββcnββ) β πΉ:ββΆβ)) |
66 | 1, 65 | mpbird 256 |
. . . 4
β’ (π β πΉ β (ββcnββ)) |
67 | | eqid 2732 |
. . . . . 6
β’
(TopOpenββfld) =
(TopOpenββfld) |
68 | 67 | tgioo2 24318 |
. . . . . 6
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
69 | 67, 68, 68 | cncfcn 24425 |
. . . . 5
β’ ((β
β β β§ β β β) β (ββcnββ) = ((topGenβran (,)) Cn
(topGenβran (,)))) |
70 | 58, 58, 69 | syl2anc 584 |
. . . 4
β’ (π β (ββcnββ) = ((topGenβran (,)) Cn
(topGenβran (,)))) |
71 | 66, 70 | eleqtrd 2835 |
. . 3
β’ (π β πΉ β ((topGenβran (,)) Cn
(topGenβran (,)))) |
72 | | fouriercn.x |
. . 3
β’ (π β π β β) |
73 | | uniretop 24278 |
. . . 4
β’ β =
βͺ (topGenβran (,)) |
74 | 73 | cncnpi 22781 |
. . 3
β’ ((πΉ β ((topGenβran (,))
Cn (topGenβran (,))) β§ π β β) β πΉ β (((topGenβran (,)) CnP
(topGenβran (,)))βπ)) |
75 | 71, 72, 74 | syl2anc 584 |
. 2
β’ (π β πΉ β (((topGenβran (,)) CnP
(topGenβran (,)))βπ)) |
76 | | fouriercn.a |
. 2
β’ π΄ = (π β β0 β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
77 | | fouriercn.b |
. 2
β’ π΅ = (π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
78 | 1, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77 | fouriercnp 44932 |
1
β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (πΉβπ)) |