Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fouriercn Structured version   Visualization version   GIF version

Theorem fouriercn 46270
Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 46260 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fouriercn.f (𝜑𝐹:ℝ⟶ℝ)
fouriercn.t 𝑇 = (2 · π)
fouriercn.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fouriercn.dv (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
fouriercn.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fouriercn.x (𝜑𝑋 ∈ ℝ)
fouriercn.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fouriercn.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fouriercn (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝐺   𝑥,𝑇   𝑛,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem fouriercn
StepHypRef Expression
1 fouriercn.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fouriercn.t . 2 𝑇 = (2 · π)
3 fouriercn.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fouriercn.g . 2 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
54dmeqi 5839 . . . . . 6 dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π))
6 ioossre 13302 . . . . . . . 8 (-π(,)π) ⊆ ℝ
7 fouriercn.dv . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
8 cncff 24808 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ)
9 fdm 6655 . . . . . . . . 9 ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐹) = ℝ)
116, 10sseqtrrid 3973 . . . . . . 7 (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹))
12 ssdmres 5957 . . . . . . 7 ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
1311, 12sylib 218 . . . . . 6 (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
145, 13eqtrid 2778 . . . . 5 (𝜑 → dom 𝐺 = (-π(,)π))
1514difeq2d 4071 . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π)))
16 difid 4321 . . . 4 ((-π(,)π) ∖ (-π(,)π)) = ∅
1715, 16eqtrdi 2782 . . 3 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅)
18 0fi 8959 . . 3 ∅ ∈ Fin
1917, 18eqeltrdi 2839 . 2 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
20 rescncf 24812 . . . 4 ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)))
216, 7, 20mpsyl 68 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))
224a1i 11 . . 3 (𝜑𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)))
2314oveq1d 7356 . . 3 (𝜑 → (dom 𝐺cn→ℂ) = ((-π(,)π)–cn→ℂ))
2421, 22, 233eltr4d 2846 . 2 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
25 pire 26388 . . . . . 6 π ∈ ℝ
2625renegcli 11417 . . . . 5 -π ∈ ℝ
2725rexri 11165 . . . . 5 π ∈ ℝ*
28 icossre 13323 . . . . 5 ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ)
2926, 27, 28mp2an 692 . . . 4 (-π[,)π) ⊆ ℝ
30 eldifi 4076 . . . 4 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π))
3129, 30sselid 3927 . . 3 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
32 limcresi 25808 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥)
334reseq1i 5919 . . . . . . . 8 (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞))
34 resres 5936 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞)))
3533, 34eqtr2i 2755 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞))
3635oveq1i 7351 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
3732, 36sseqtri 3978 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
387adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
39 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
4038, 39cnlimci 25812 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) lim 𝑥))
4137, 40sselid 3927 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥))
4241ne0d 4287 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
4331, 42sylan2 593 . 2 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
44 negpitopissre 26471 . . . 4 (-π(,]π) ⊆ ℝ
45 eldifi 4076 . . . 4 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π))
4644, 45sselid 3927 . . 3 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
47 limcresi 25808 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥)
484reseq1i 5919 . . . . . . . 8 (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥))
49 resres 5936 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥)))
5048, 49eqtr2i 2755 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥))
5150oveq1i 7351 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5247, 51sseqtri 3978 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5352, 40sselid 3927 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥))
5453ne0d 4287 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
5546, 54sylan2 593 . 2 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
56 eqid 2731 . 2 (topGen‘ran (,)) = (topGen‘ran (,))
57 ax-resscn 11058 . . . . . . 7 ℝ ⊆ ℂ
5857a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
591, 58fssd 6663 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
60 ssid 3952 . . . . . . . 8 ℝ ⊆ ℝ
6160a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ)
62 dvcn 25845 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ))
6358, 59, 61, 10, 62syl31anc 1375 . . . . . 6 (𝜑𝐹 ∈ (ℝ–cn→ℂ))
64 cncfcdm 24813 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
6558, 63, 64syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
661, 65mpbird 257 . . . 4 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
67 eqid 2731 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
68 tgioo4 24715 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6967, 68, 68cncfcn 24825 . . . . 5 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7058, 58, 69syl2anc 584 . . . 4 (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7166, 70eleqtrd 2833 . . 3 (𝜑𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
72 fouriercn.x . . 3 (𝜑𝑋 ∈ ℝ)
73 uniretop 24672 . . . 4 ℝ = (topGen‘ran (,))
7473cncnpi 23188 . . 3 ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
7571, 72, 74syl2anc 584 . 2 (𝜑𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
76 fouriercn.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
77 fouriercn.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
781, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77fouriercnp 46264 1 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  cin 3896  wss 3897  c0 4278  cmpt 5167  dom cdm 5611  ran crn 5612  cres 5613  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  cc 10999  cr 11000  0cc0 11001   + caddc 11004   · cmul 11006  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  (,)cioo 13240  (,]cioc 13241  [,)cico 13242  Σcsu 15588  sincsin 15965  cosccos 15966  πcpi 15968  TopOpenctopn 17320  topGenctg 17336  fldccnfld 21286   Cn ccn 23134   CnP ccnp 23135  cnccncf 24791  citg 25541   lim climc 25785   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4198  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-t1 23224  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543  df-itg2 25544  df-ibl 25545  df-itg 25546  df-0p 25593  df-ditg 25770  df-limc 25789  df-dv 25790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator