![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercn | Structured version Visualization version GIF version |
Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 46143 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercn.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercn.t | ⊢ 𝑇 = (2 · π) |
fouriercn.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercn.dv | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
fouriercn.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercn.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fouriercn.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercn.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercn | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercn.f | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercn.t | . 2 ⊢ 𝑇 = (2 · π) | |
3 | fouriercn.per | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercn.g | . 2 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | 4 | dmeqi 5929 | . . . . . 6 ⊢ dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π)) |
6 | ioossre 13468 | . . . . . . . 8 ⊢ (-π(,)π) ⊆ ℝ | |
7 | fouriercn.dv | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) | |
8 | cncff 24938 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ) | |
9 | fdm 6756 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝐹) = ℝ) |
11 | 6, 10 | sseqtrrid 4062 | . . . . . . 7 ⊢ (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹)) |
12 | ssdmres 6042 | . . . . . . 7 ⊢ ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) | |
13 | 11, 12 | sylib 218 | . . . . . 6 ⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) |
14 | 5, 13 | eqtrid 2792 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = (-π(,)π)) |
15 | 14 | difeq2d 4149 | . . . 4 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π))) |
16 | difid 4398 | . . . 4 ⊢ ((-π(,)π) ∖ (-π(,)π)) = ∅ | |
17 | 15, 16 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅) |
18 | 0fi 9108 | . . 3 ⊢ ∅ ∈ Fin | |
19 | 17, 18 | eqeltrdi 2852 | . 2 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
20 | rescncf 24942 | . . . 4 ⊢ ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))) | |
21 | 6, 7, 20 | mpsyl 68 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)) |
22 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))) |
23 | 14 | oveq1d 7463 | . . 3 ⊢ (𝜑 → (dom 𝐺–cn→ℂ) = ((-π(,)π)–cn→ℂ)) |
24 | 21, 22, 23 | 3eltr4d 2859 | . 2 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
25 | pire 26518 | . . . . . 6 ⊢ π ∈ ℝ | |
26 | 25 | renegcli 11597 | . . . . 5 ⊢ -π ∈ ℝ |
27 | 25 | rexri 11348 | . . . . 5 ⊢ π ∈ ℝ* |
28 | icossre 13488 | . . . . 5 ⊢ ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ) | |
29 | 26, 27, 28 | mp2an 691 | . . . 4 ⊢ (-π[,)π) ⊆ ℝ |
30 | eldifi 4154 | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π)) | |
31 | 29, 30 | sselid 4006 | . . 3 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
32 | limcresi 25940 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) | |
33 | 4 | reseq1i 6005 | . . . . . . . 8 ⊢ (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) |
34 | resres 6022 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) | |
35 | 33, 34 | eqtr2i 2769 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞)) |
36 | 35 | oveq1i 7458 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
37 | 32, 36 | sseqtri 4045 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
38 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
40 | 38, 39 | cnlimci 25944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) limℂ 𝑥)) |
41 | 37, 40 | sselid 4006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥)) |
42 | 41 | ne0d 4365 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
43 | 31, 42 | sylan2 592 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
44 | negpitopissre 26600 | . . . 4 ⊢ (-π(,]π) ⊆ ℝ | |
45 | eldifi 4154 | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π)) | |
46 | 44, 45 | sselid 4006 | . . 3 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
47 | limcresi 25940 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) | |
48 | 4 | reseq1i 6005 | . . . . . . . 8 ⊢ (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) |
49 | resres 6022 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) | |
50 | 48, 49 | eqtr2i 2769 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥)) |
51 | 50 | oveq1i 7458 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
52 | 47, 51 | sseqtri 4045 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
53 | 52, 40 | sselid 4006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥)) |
54 | 53 | ne0d 4365 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
55 | 46, 54 | sylan2 592 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
56 | eqid 2740 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
57 | ax-resscn 11241 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
58 | 57 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
59 | 1, 58 | fssd 6764 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
60 | ssid 4031 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ | |
61 | 60 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) |
62 | dvcn 25977 | . . . . . . 7 ⊢ (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ)) | |
63 | 58, 59, 61, 10, 62 | syl31anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℂ)) |
64 | cncfcdm 24943 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) | |
65 | 58, 63, 64 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) |
66 | 1, 65 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
67 | eqid 2740 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
68 | 67 | tgioo2 24844 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
69 | 67, 68, 68 | cncfcn 24955 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
70 | 58, 58, 69 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
71 | 66, 70 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
72 | fouriercn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
73 | uniretop 24804 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
74 | 73 | cncnpi 23307 | . . 3 ⊢ ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
75 | 71, 72, 74 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
76 | fouriercn.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
77 | fouriercn.b | . 2 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
78 | 1, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77 | fouriercnp 46147 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 · cmul 11189 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 -cneg 11521 / cdiv 11947 ℕcn 12293 2c2 12348 ℕ0cn0 12553 (,)cioo 13407 (,]cioc 13408 [,)cico 13409 Σcsu 15734 sincsin 16111 cosccos 16112 πcpi 16114 TopOpenctopn 17481 topGenctg 17497 ℂfldccnfld 21387 Cn ccn 23253 CnP ccnp 23254 –cn→ccncf 24921 ∫citg 25672 limℂ climc 25917 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-t1 23343 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-ditg 25902 df-limc 25921 df-dv 25922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |