![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercn | Structured version Visualization version GIF version |
Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd 46178 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercn.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercn.t | ⊢ 𝑇 = (2 · π) |
fouriercn.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercn.dv | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
fouriercn.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercn.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fouriercn.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercn.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercn | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercn.f | . 2 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercn.t | . 2 ⊢ 𝑇 = (2 · π) | |
3 | fouriercn.per | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercn.g | . 2 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | 4 | dmeqi 5918 | . . . . . 6 ⊢ dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π)) |
6 | ioossre 13445 | . . . . . . . 8 ⊢ (-π(,)π) ⊆ ℝ | |
7 | fouriercn.dv | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) | |
8 | cncff 24933 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ) | |
9 | fdm 6746 | . . . . . . . . 9 ⊢ ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝐹) = ℝ) |
11 | 6, 10 | sseqtrrid 4049 | . . . . . . 7 ⊢ (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹)) |
12 | ssdmres 6033 | . . . . . . 7 ⊢ ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) | |
13 | 11, 12 | sylib 218 | . . . . . 6 ⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π)) |
14 | 5, 13 | eqtrid 2787 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = (-π(,)π)) |
15 | 14 | difeq2d 4136 | . . . 4 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π))) |
16 | difid 4382 | . . . 4 ⊢ ((-π(,)π) ∖ (-π(,)π)) = ∅ | |
17 | 15, 16 | eqtrdi 2791 | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅) |
18 | 0fi 9081 | . . 3 ⊢ ∅ ∈ Fin | |
19 | 17, 18 | eqeltrdi 2847 | . 2 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
20 | rescncf 24937 | . . . 4 ⊢ ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))) | |
21 | 6, 7, 20 | mpsyl 68 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)) |
22 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))) |
23 | 14 | oveq1d 7446 | . . 3 ⊢ (𝜑 → (dom 𝐺–cn→ℂ) = ((-π(,)π)–cn→ℂ)) |
24 | 21, 22, 23 | 3eltr4d 2854 | . 2 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
25 | pire 26515 | . . . . . 6 ⊢ π ∈ ℝ | |
26 | 25 | renegcli 11568 | . . . . 5 ⊢ -π ∈ ℝ |
27 | 25 | rexri 11317 | . . . . 5 ⊢ π ∈ ℝ* |
28 | icossre 13465 | . . . . 5 ⊢ ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ) | |
29 | 26, 27, 28 | mp2an 692 | . . . 4 ⊢ (-π[,)π) ⊆ ℝ |
30 | eldifi 4141 | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π)) | |
31 | 29, 30 | sselid 3993 | . . 3 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
32 | limcresi 25935 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) | |
33 | 4 | reseq1i 5996 | . . . . . . . 8 ⊢ (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) |
34 | resres 6013 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) | |
35 | 33, 34 | eqtr2i 2764 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞)) |
36 | 35 | oveq1i 7441 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) limℂ 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
37 | 32, 36 | sseqtri 4032 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) |
38 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) |
39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
40 | 38, 39 | cnlimci 25939 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) limℂ 𝑥)) |
41 | 37, 40 | sselid 3993 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥)) |
42 | 41 | ne0d 4348 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
43 | 31, 42 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
44 | negpitopissre 26597 | . . . 4 ⊢ (-π(,]π) ⊆ ℝ | |
45 | eldifi 4141 | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π)) | |
46 | 44, 45 | sselid 3993 | . . 3 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ) |
47 | limcresi 25935 | . . . . . 6 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) | |
48 | 4 | reseq1i 5996 | . . . . . . . 8 ⊢ (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) |
49 | resres 6013 | . . . . . . . 8 ⊢ (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) | |
50 | 48, 49 | eqtr2i 2764 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥)) |
51 | 50 | oveq1i 7441 | . . . . . 6 ⊢ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) limℂ 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
52 | 47, 51 | sseqtri 4032 | . . . . 5 ⊢ ((ℝ D 𝐹) limℂ 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) |
53 | 52, 40 | sselid 3993 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥)) |
54 | 53 | ne0d 4348 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
55 | 46, 54 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
56 | eqid 2735 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
57 | ax-resscn 11210 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
58 | 57 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
59 | 1, 58 | fssd 6754 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
60 | ssid 4018 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ | |
61 | 60 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) |
62 | dvcn 25972 | . . . . . . 7 ⊢ (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ)) | |
63 | 58, 59, 61, 10, 62 | syl31anc 1372 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℂ)) |
64 | cncfcdm 24938 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) | |
65 | 58, 63, 64 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ)) |
66 | 1, 65 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ–cn→ℝ)) |
67 | eqid 2735 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
68 | 67 | tgioo2 24839 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
69 | 67, 68, 68 | cncfcn 24950 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
70 | 58, 58, 69 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
71 | 66, 70 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))) |
72 | fouriercn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
73 | uniretop 24799 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
74 | 73 | cncnpi 23302 | . . 3 ⊢ ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
75 | 71, 72, 74 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋)) |
76 | fouriercn.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
77 | fouriercn.b | . 2 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
78 | 1, 2, 3, 4, 19, 24, 43, 55, 56, 75, 76, 77 | fouriercnp 46182 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ↦ cmpt 5231 dom cdm 5689 ran crn 5690 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 -cneg 11491 / cdiv 11918 ℕcn 12264 2c2 12319 ℕ0cn0 12524 (,)cioo 13384 (,]cioc 13385 [,)cico 13386 Σcsu 15719 sincsin 16096 cosccos 16097 πcpi 16099 TopOpenctopn 17468 topGenctg 17484 ℂfldccnfld 21382 Cn ccn 23248 CnP ccnp 23249 –cn→ccncf 24916 ∫citg 25667 limℂ climc 25912 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-symdif 4259 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-t1 23338 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 df-ditg 25897 df-limc 25916 df-dv 25917 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |