Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem1 45909
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem1.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem1.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem1.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
dvbdfbdioolem1.d (𝜑𝐷 ∈ (𝐶(,)𝐵))
Assertion
Ref Expression
dvbdfbdioolem1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 13310 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
2 dvbdfbdioolem1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
31, 2sselid 3933 . . 3 (𝜑𝐶 ∈ ℝ)
4 ioossre 13310 . . . 4 (𝐶(,)𝐵) ⊆ ℝ
5 dvbdfbdioolem1.d . . . 4 (𝜑𝐷 ∈ (𝐶(,)𝐵))
64, 5sselid 3933 . . 3 (𝜑𝐷 ∈ ℝ)
73rexrd 11165 . . . 4 (𝜑𝐶 ∈ ℝ*)
8 dvbdfbdioolem1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98rexrd 11165 . . . 4 (𝜑𝐵 ∈ ℝ*)
10 ioogtlb 45476 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐶 < 𝐷)
117, 9, 5, 10syl3anc 1373 . . 3 (𝜑𝐶 < 𝐷)
12 dvbdfbdioolem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1312rexrd 11165 . . . . 5 (𝜑𝐴 ∈ ℝ*)
14 ioogtlb 45476 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
1513, 9, 2, 14syl3anc 1373 . . . . 5 (𝜑𝐴 < 𝐶)
16 iooltub 45491 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐷 < 𝐵)
177, 9, 5, 16syl3anc 1373 . . . . 5 (𝜑𝐷 < 𝐵)
18 iccssioo 13318 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
1913, 9, 15, 17, 18syl22anc 838 . . . 4 (𝜑 → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
20 dvbdfbdioolem1.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
2221a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2320, 22fssd 6669 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
241a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
25 dvbdfbdioolem1.dmdv . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
26 dvcn 25821 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2722, 23, 24, 25, 26syl31anc 1375 . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
28 cncfcdm 24789 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2922, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
3020, 29mpbird 257 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
31 rescncf 24788 . . . 4 ((𝐶[,]𝐷) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ)))
3219, 30, 31sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ))
3319, 24sstrd 3946 . . . . . . 7 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
34 eqid 2729 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 tgioo4 24691 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3634, 35dvres 25810 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
3722, 23, 24, 33, 36syl22anc 838 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
38 iccntr 24708 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
393, 6, 38syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
4039reseq2d 5930 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4137, 40eqtrd 2764 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4241dmeqd 5848 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4312, 3, 15ltled 11264 . . . . . . 7 (𝜑𝐴𝐶)
446, 8, 17ltled 11264 . . . . . . 7 (𝜑𝐷𝐵)
45 ioossioo 13344 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4613, 9, 43, 44, 45syl22anc 838 . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4746, 25sseqtrrd 3973 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹))
48 ssdmres 5964 . . . . 5 ((𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
4947, 48sylib 218 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
5042, 49eqtrd 2764 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝐶(,)𝐷))
513, 6, 11, 32, 50mvth 25895 . 2 (𝜑 → ∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
5241fveq1d 6824 . . . . . . . . 9 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥))
53 fvres 6841 . . . . . . . . 9 (𝑥 ∈ (𝐶(,)𝐷) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5452, 53sylan9eq 2784 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5554eqcomd 2735 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
56553adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
57 simp3 1138 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
586rexrd 11165 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ*)
593, 6, 11ltled 11264 . . . . . . . . . . 11 (𝜑𝐶𝐷)
60 ubicc2 13368 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
617, 58, 59, 60syl3anc 1373 . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶[,]𝐷))
62 fvres 6841 . . . . . . . . . 10 (𝐷 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
6361, 62syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
64 lbicc2 13367 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
657, 58, 59, 64syl3anc 1373 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐶[,]𝐷))
66 fvres 6841 . . . . . . . . . 10 (𝐶 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6765, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6863, 67oveq12d 7367 . . . . . . . 8 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) = ((𝐹𝐷) − (𝐹𝐶)))
6968oveq1d 7364 . . . . . . 7 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
70693ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7156, 57, 703eqtrd 2768 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
72 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7372eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥))
7419, 61sseldd 3936 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (𝐴(,)𝐵))
7520, 74ffvelcdmd 7019 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐷) ∈ ℝ)
7620, 2ffvelcdmd 7019 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℝ)
7775, 76resubcld 11548 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℝ)
7877recnd 11143 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
79783ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
80 dvfre 25853 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8120, 24, 80syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8225feq2d 6636 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
8381, 82mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8483adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8546sselda 3935 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝑥 ∈ (𝐴(,)𝐵))
8684, 85ffvelcdmd 7019 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
8786recnd 11143 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
88873adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
896, 3resubcld 11548 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐶) ∈ ℝ)
9089recnd 11143 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ∈ ℂ)
91903ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ∈ ℂ)
923, 6posdifd 11707 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐷 ↔ 0 < (𝐷𝐶)))
9311, 92mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐷𝐶))
9493gt0ne0d 11684 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ≠ 0)
95943ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ≠ 0)
9679, 88, 91, 95divmul3d 11934 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9773, 96mpbid 232 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶)))
9897fveq2d 6826 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9990adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℂ)
10087, 99absmuld 15364 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1011003adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
10298, 101eqtrd 2764 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1033, 6, 59abssubge0d 15341 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) = (𝐷𝐶))
104103oveq2d 7365 . . . . . . . 8 (𝜑 → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
1051043ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
106102, 105eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
10787abscld 15346 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
108 dvbdfbdioolem1.k . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
109108adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝐾 ∈ ℝ)
11089adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℝ)
111 0red 11118 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
112111, 89, 93ltled 11264 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷𝐶))
113112adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (𝐷𝐶))
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
115114adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
116 rspa 3218 . . . . . . . . 9 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
117115, 85, 116syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
118107, 109, 110, 113, 117lemul1ad 12064 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
1191183adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
120106, 119eqbrtrd 5114 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12171, 120syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12299abscld 15346 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ∈ ℝ)
1238, 12resubcld 11548 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
124123adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐵𝐴) ∈ ℝ)
12587absge0d 15354 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
12699absge0d 15354 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘(𝐷𝐶)))
1276, 12, 8, 3, 44, 43le2subd 11740 . . . . . . . . . 10 (𝜑 → (𝐷𝐶) ≤ (𝐵𝐴))
128103, 127eqbrtrd 5114 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
129128adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 12067 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
1311303adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
132102, 131eqbrtrd 5114 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
13371, 132syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
134121, 133jca 511 . . 3 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
135134rexlimdv3a 3134 . 2 (𝜑 → (∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))))
13651, 135mpd 15 1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  dom cdm 5619  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  (,)cioo 13248  [,]cicc 13251  abscabs 15141  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  intcnt 22902  cnccncf 24767   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  dvbdfbdioolem2  45910  ioodvbdlimc1lem1  45912  ioodvbdlimc1lem2  45913  ioodvbdlimc2lem  45915
  Copyright terms: Public domain W3C validator