Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem1 42937
 Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem1.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem1.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem1.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
dvbdfbdioolem1.d (𝜑𝐷 ∈ (𝐶(,)𝐵))
Assertion
Ref Expression
dvbdfbdioolem1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 12841 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
2 dvbdfbdioolem1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
31, 2sseldi 3891 . . 3 (𝜑𝐶 ∈ ℝ)
4 ioossre 12841 . . . 4 (𝐶(,)𝐵) ⊆ ℝ
5 dvbdfbdioolem1.d . . . 4 (𝜑𝐷 ∈ (𝐶(,)𝐵))
64, 5sseldi 3891 . . 3 (𝜑𝐷 ∈ ℝ)
73rexrd 10730 . . . 4 (𝜑𝐶 ∈ ℝ*)
8 dvbdfbdioolem1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98rexrd 10730 . . . 4 (𝜑𝐵 ∈ ℝ*)
10 ioogtlb 42499 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐶 < 𝐷)
117, 9, 5, 10syl3anc 1369 . . 3 (𝜑𝐶 < 𝐷)
12 dvbdfbdioolem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1312rexrd 10730 . . . . 5 (𝜑𝐴 ∈ ℝ*)
14 ioogtlb 42499 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
1513, 9, 2, 14syl3anc 1369 . . . . 5 (𝜑𝐴 < 𝐶)
16 iooltub 42514 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐷 < 𝐵)
177, 9, 5, 16syl3anc 1369 . . . . 5 (𝜑𝐷 < 𝐵)
18 iccssioo 12849 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
1913, 9, 15, 17, 18syl22anc 838 . . . 4 (𝜑 → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
20 dvbdfbdioolem1.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21 ax-resscn 10633 . . . . . . 7 ℝ ⊆ ℂ
2221a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2320, 22fssd 6514 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
241a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
25 dvbdfbdioolem1.dmdv . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
26 dvcn 24621 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2722, 23, 24, 25, 26syl31anc 1371 . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
28 cncffvrn 23600 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2922, 27, 28syl2anc 588 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
3020, 29mpbird 260 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
31 rescncf 23599 . . . 4 ((𝐶[,]𝐷) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ)))
3219, 30, 31sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ))
3319, 24sstrd 3903 . . . . . . 7 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
34 eqid 2759 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534tgioo2 23505 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3634, 35dvres 24611 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
3722, 23, 24, 33, 36syl22anc 838 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
38 iccntr 23523 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
393, 6, 38syl2anc 588 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
4039reseq2d 5824 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4137, 40eqtrd 2794 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4241dmeqd 5746 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4312, 3, 15ltled 10827 . . . . . . 7 (𝜑𝐴𝐶)
446, 8, 17ltled 10827 . . . . . . 7 (𝜑𝐷𝐵)
45 ioossioo 12874 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4613, 9, 43, 44, 45syl22anc 838 . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4746, 25sseqtrrd 3934 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹))
48 ssdmres 5847 . . . . 5 ((𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
4947, 48sylib 221 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
5042, 49eqtrd 2794 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝐶(,)𝐷))
513, 6, 11, 32, 50mvth 24692 . 2 (𝜑 → ∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
5241fveq1d 6661 . . . . . . . . 9 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥))
53 fvres 6678 . . . . . . . . 9 (𝑥 ∈ (𝐶(,)𝐷) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5452, 53sylan9eq 2814 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5554eqcomd 2765 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
56553adant3 1130 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
57 simp3 1136 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
586rexrd 10730 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ*)
593, 6, 11ltled 10827 . . . . . . . . . . 11 (𝜑𝐶𝐷)
60 ubicc2 12898 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
617, 58, 59, 60syl3anc 1369 . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶[,]𝐷))
62 fvres 6678 . . . . . . . . . 10 (𝐷 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
6361, 62syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
64 lbicc2 12897 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
657, 58, 59, 64syl3anc 1369 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐶[,]𝐷))
66 fvres 6678 . . . . . . . . . 10 (𝐶 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6765, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6863, 67oveq12d 7169 . . . . . . . 8 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) = ((𝐹𝐷) − (𝐹𝐶)))
6968oveq1d 7166 . . . . . . 7 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
70693ad2ant1 1131 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7156, 57, 703eqtrd 2798 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
72 simp3 1136 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7372eqcomd 2765 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥))
7419, 61sseldd 3894 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (𝐴(,)𝐵))
7520, 74ffvelrnd 6844 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐷) ∈ ℝ)
7620, 2ffvelrnd 6844 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℝ)
7775, 76resubcld 11107 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℝ)
7877recnd 10708 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
79783ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
80 dvfre 24651 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8120, 24, 80syl2anc 588 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8225feq2d 6485 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
8381, 82mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8483adantr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8546sselda 3893 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝑥 ∈ (𝐴(,)𝐵))
8684, 85ffvelrnd 6844 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
8786recnd 10708 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
88873adant3 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
896, 3resubcld 11107 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐶) ∈ ℝ)
9089recnd 10708 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ∈ ℂ)
91903ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ∈ ℂ)
923, 6posdifd 11266 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐷 ↔ 0 < (𝐷𝐶)))
9311, 92mpbid 235 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐷𝐶))
9493gt0ne0d 11243 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ≠ 0)
95943ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ≠ 0)
9679, 88, 91, 95divmul3d 11489 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9773, 96mpbid 235 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶)))
9897fveq2d 6663 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9990adantr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℂ)
10087, 99absmuld 14863 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1011003adant3 1130 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
10298, 101eqtrd 2794 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1033, 6, 59abssubge0d 14840 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) = (𝐷𝐶))
104103oveq2d 7167 . . . . . . . 8 (𝜑 → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
1051043ad2ant1 1131 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
106102, 105eqtrd 2794 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
10787abscld 14845 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
108 dvbdfbdioolem1.k . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
109108adantr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝐾 ∈ ℝ)
11089adantr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℝ)
111 0red 10683 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
112111, 89, 93ltled 10827 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷𝐶))
113112adantr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (𝐷𝐶))
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
115114adantr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
116 rspa 3136 . . . . . . . . 9 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
117115, 85, 116syl2anc 588 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
118107, 109, 110, 113, 117lemul1ad 11618 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
1191183adant3 1130 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
120106, 119eqbrtrd 5055 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12171, 120syld3an3 1407 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12299abscld 14845 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ∈ ℝ)
1238, 12resubcld 11107 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
124123adantr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐵𝐴) ∈ ℝ)
12587absge0d 14853 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
12699absge0d 14853 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘(𝐷𝐶)))
1276, 12, 8, 3, 44, 43le2subd 11299 . . . . . . . . . 10 (𝜑 → (𝐷𝐶) ≤ (𝐵𝐴))
128103, 127eqbrtrd 5055 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
129128adantr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 11621 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
1311303adant3 1130 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
132102, 131eqbrtrd 5055 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
13371, 132syld3an3 1407 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
134121, 133jca 516 . . 3 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
135134rexlimdv3a 3211 . 2 (𝜑 → (∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))))
13651, 135mpd 15 1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072   ⊆ wss 3859   class class class wbr 5033  dom cdm 5525  ran crn 5526   ↾ cres 5527  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  ℂcc 10574  ℝcr 10575  0cc0 10576   · cmul 10581  ℝ*cxr 10713   < clt 10714   ≤ cle 10715   − cmin 10909   / cdiv 11336  (,)cioo 12780  [,]cicc 12783  abscabs 14642  TopOpenctopn 16754  topGenctg 16770  ℂfldccnfld 20167  intcnt 21718  –cn→ccncf 23578   D cdv 24563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654  ax-addf 10655  ax-mulf 10656 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-fi 8909  df-sup 8940  df-inf 8941  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-ioo 12784  df-ico 12786  df-icc 12787  df-fz 12941  df-fzo 13084  df-seq 13420  df-exp 13481  df-hash 13742  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-rest 16755  df-topn 16756  df-0g 16774  df-gsum 16775  df-topgen 16776  df-pt 16777  df-prds 16780  df-xrs 16834  df-qtop 16839  df-imas 16840  df-xps 16842  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-submnd 18024  df-mulg 18293  df-cntz 18515  df-cmn 18976  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-fbas 20164  df-fg 20165  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cld 21720  df-ntr 21721  df-cls 21722  df-nei 21799  df-lp 21837  df-perf 21838  df-cn 21928  df-cnp 21929  df-haus 22016  df-cmp 22088  df-tx 22263  df-hmeo 22456  df-fil 22547  df-fm 22639  df-flim 22640  df-flf 22641  df-xms 23023  df-ms 23024  df-tms 23025  df-cncf 23580  df-limc 24566  df-dv 24567 This theorem is referenced by:  dvbdfbdioolem2  42938  ioodvbdlimc1lem1  42940  ioodvbdlimc1lem2  42941  ioodvbdlimc2lem  42943
 Copyright terms: Public domain W3C validator