Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem1 45933
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem1.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem1.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem1.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
dvbdfbdioolem1.d (𝜑𝐷 ∈ (𝐶(,)𝐵))
Assertion
Ref Expression
dvbdfbdioolem1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 13375 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
2 dvbdfbdioolem1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
31, 2sselid 3947 . . 3 (𝜑𝐶 ∈ ℝ)
4 ioossre 13375 . . . 4 (𝐶(,)𝐵) ⊆ ℝ
5 dvbdfbdioolem1.d . . . 4 (𝜑𝐷 ∈ (𝐶(,)𝐵))
64, 5sselid 3947 . . 3 (𝜑𝐷 ∈ ℝ)
73rexrd 11231 . . . 4 (𝜑𝐶 ∈ ℝ*)
8 dvbdfbdioolem1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98rexrd 11231 . . . 4 (𝜑𝐵 ∈ ℝ*)
10 ioogtlb 45500 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐶 < 𝐷)
117, 9, 5, 10syl3anc 1373 . . 3 (𝜑𝐶 < 𝐷)
12 dvbdfbdioolem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1312rexrd 11231 . . . . 5 (𝜑𝐴 ∈ ℝ*)
14 ioogtlb 45500 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
1513, 9, 2, 14syl3anc 1373 . . . . 5 (𝜑𝐴 < 𝐶)
16 iooltub 45515 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐷 < 𝐵)
177, 9, 5, 16syl3anc 1373 . . . . 5 (𝜑𝐷 < 𝐵)
18 iccssioo 13383 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
1913, 9, 15, 17, 18syl22anc 838 . . . 4 (𝜑 → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
20 dvbdfbdioolem1.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
2221a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2320, 22fssd 6708 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
241a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
25 dvbdfbdioolem1.dmdv . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
26 dvcn 25830 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2722, 23, 24, 25, 26syl31anc 1375 . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
28 cncfcdm 24798 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2922, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
3020, 29mpbird 257 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
31 rescncf 24797 . . . 4 ((𝐶[,]𝐷) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ)))
3219, 30, 31sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ))
3319, 24sstrd 3960 . . . . . . 7 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
34 eqid 2730 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 tgioo4 24700 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3634, 35dvres 25819 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
3722, 23, 24, 33, 36syl22anc 838 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
38 iccntr 24717 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
393, 6, 38syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
4039reseq2d 5953 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4137, 40eqtrd 2765 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4241dmeqd 5872 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4312, 3, 15ltled 11329 . . . . . . 7 (𝜑𝐴𝐶)
446, 8, 17ltled 11329 . . . . . . 7 (𝜑𝐷𝐵)
45 ioossioo 13409 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4613, 9, 43, 44, 45syl22anc 838 . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4746, 25sseqtrrd 3987 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹))
48 ssdmres 5987 . . . . 5 ((𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
4947, 48sylib 218 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
5042, 49eqtrd 2765 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝐶(,)𝐷))
513, 6, 11, 32, 50mvth 25904 . 2 (𝜑 → ∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
5241fveq1d 6863 . . . . . . . . 9 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥))
53 fvres 6880 . . . . . . . . 9 (𝑥 ∈ (𝐶(,)𝐷) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5452, 53sylan9eq 2785 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5554eqcomd 2736 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
56553adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
57 simp3 1138 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
586rexrd 11231 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ*)
593, 6, 11ltled 11329 . . . . . . . . . . 11 (𝜑𝐶𝐷)
60 ubicc2 13433 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
617, 58, 59, 60syl3anc 1373 . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶[,]𝐷))
62 fvres 6880 . . . . . . . . . 10 (𝐷 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
6361, 62syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
64 lbicc2 13432 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
657, 58, 59, 64syl3anc 1373 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐶[,]𝐷))
66 fvres 6880 . . . . . . . . . 10 (𝐶 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6765, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6863, 67oveq12d 7408 . . . . . . . 8 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) = ((𝐹𝐷) − (𝐹𝐶)))
6968oveq1d 7405 . . . . . . 7 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
70693ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7156, 57, 703eqtrd 2769 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
72 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7372eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥))
7419, 61sseldd 3950 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (𝐴(,)𝐵))
7520, 74ffvelcdmd 7060 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐷) ∈ ℝ)
7620, 2ffvelcdmd 7060 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℝ)
7775, 76resubcld 11613 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℝ)
7877recnd 11209 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
79783ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
80 dvfre 25862 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8120, 24, 80syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8225feq2d 6675 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
8381, 82mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8483adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8546sselda 3949 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝑥 ∈ (𝐴(,)𝐵))
8684, 85ffvelcdmd 7060 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
8786recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
88873adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
896, 3resubcld 11613 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐶) ∈ ℝ)
9089recnd 11209 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ∈ ℂ)
91903ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ∈ ℂ)
923, 6posdifd 11772 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐷 ↔ 0 < (𝐷𝐶)))
9311, 92mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐷𝐶))
9493gt0ne0d 11749 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ≠ 0)
95943ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ≠ 0)
9679, 88, 91, 95divmul3d 11999 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9773, 96mpbid 232 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶)))
9897fveq2d 6865 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9990adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℂ)
10087, 99absmuld 15430 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1011003adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
10298, 101eqtrd 2765 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1033, 6, 59abssubge0d 15407 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) = (𝐷𝐶))
104103oveq2d 7406 . . . . . . . 8 (𝜑 → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
1051043ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
106102, 105eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
10787abscld 15412 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
108 dvbdfbdioolem1.k . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
109108adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝐾 ∈ ℝ)
11089adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℝ)
111 0red 11184 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
112111, 89, 93ltled 11329 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷𝐶))
113112adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (𝐷𝐶))
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
115114adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
116 rspa 3227 . . . . . . . . 9 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
117115, 85, 116syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
118107, 109, 110, 113, 117lemul1ad 12129 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
1191183adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
120106, 119eqbrtrd 5132 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12171, 120syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12299abscld 15412 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ∈ ℝ)
1238, 12resubcld 11613 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
124123adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐵𝐴) ∈ ℝ)
12587absge0d 15420 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
12699absge0d 15420 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘(𝐷𝐶)))
1276, 12, 8, 3, 44, 43le2subd 11805 . . . . . . . . . 10 (𝜑 → (𝐷𝐶) ≤ (𝐵𝐴))
128103, 127eqbrtrd 5132 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
129128adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 12132 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
1311303adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
132102, 131eqbrtrd 5132 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
13371, 132syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
134121, 133jca 511 . . 3 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
135134rexlimdv3a 3139 . 2 (𝜑 → (∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))))
13651, 135mpd 15 1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  (,)cioo 13313  [,]cicc 13316  abscabs 15207  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvbdfbdioolem2  45934  ioodvbdlimc1lem1  45936  ioodvbdlimc1lem2  45937  ioodvbdlimc2lem  45939
  Copyright terms: Public domain W3C validator