Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem1 45943
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem1.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem1.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem1.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
dvbdfbdioolem1.d (𝜑𝐷 ∈ (𝐶(,)𝐵))
Assertion
Ref Expression
dvbdfbdioolem1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 13448 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
2 dvbdfbdioolem1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
31, 2sselid 3981 . . 3 (𝜑𝐶 ∈ ℝ)
4 ioossre 13448 . . . 4 (𝐶(,)𝐵) ⊆ ℝ
5 dvbdfbdioolem1.d . . . 4 (𝜑𝐷 ∈ (𝐶(,)𝐵))
64, 5sselid 3981 . . 3 (𝜑𝐷 ∈ ℝ)
73rexrd 11311 . . . 4 (𝜑𝐶 ∈ ℝ*)
8 dvbdfbdioolem1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98rexrd 11311 . . . 4 (𝜑𝐵 ∈ ℝ*)
10 ioogtlb 45508 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐶 < 𝐷)
117, 9, 5, 10syl3anc 1373 . . 3 (𝜑𝐶 < 𝐷)
12 dvbdfbdioolem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1312rexrd 11311 . . . . 5 (𝜑𝐴 ∈ ℝ*)
14 ioogtlb 45508 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
1513, 9, 2, 14syl3anc 1373 . . . . 5 (𝜑𝐴 < 𝐶)
16 iooltub 45523 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐷 < 𝐵)
177, 9, 5, 16syl3anc 1373 . . . . 5 (𝜑𝐷 < 𝐵)
18 iccssioo 13456 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
1913, 9, 15, 17, 18syl22anc 839 . . . 4 (𝜑 → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
20 dvbdfbdioolem1.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21 ax-resscn 11212 . . . . . . 7 ℝ ⊆ ℂ
2221a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2320, 22fssd 6753 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
241a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
25 dvbdfbdioolem1.dmdv . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
26 dvcn 25957 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2722, 23, 24, 25, 26syl31anc 1375 . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
28 cncfcdm 24924 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2922, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
3020, 29mpbird 257 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
31 rescncf 24923 . . . 4 ((𝐶[,]𝐷) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ)))
3219, 30, 31sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ))
3319, 24sstrd 3994 . . . . . . 7 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
34 eqid 2737 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 tgioo4 24826 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3634, 35dvres 25946 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
3722, 23, 24, 33, 36syl22anc 839 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
38 iccntr 24843 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
393, 6, 38syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
4039reseq2d 5997 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4137, 40eqtrd 2777 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4241dmeqd 5916 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4312, 3, 15ltled 11409 . . . . . . 7 (𝜑𝐴𝐶)
446, 8, 17ltled 11409 . . . . . . 7 (𝜑𝐷𝐵)
45 ioossioo 13481 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4613, 9, 43, 44, 45syl22anc 839 . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4746, 25sseqtrrd 4021 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹))
48 ssdmres 6031 . . . . 5 ((𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
4947, 48sylib 218 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
5042, 49eqtrd 2777 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝐶(,)𝐷))
513, 6, 11, 32, 50mvth 26031 . 2 (𝜑 → ∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
5241fveq1d 6908 . . . . . . . . 9 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥))
53 fvres 6925 . . . . . . . . 9 (𝑥 ∈ (𝐶(,)𝐷) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5452, 53sylan9eq 2797 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5554eqcomd 2743 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
56553adant3 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
57 simp3 1139 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
586rexrd 11311 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ*)
593, 6, 11ltled 11409 . . . . . . . . . . 11 (𝜑𝐶𝐷)
60 ubicc2 13505 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
617, 58, 59, 60syl3anc 1373 . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶[,]𝐷))
62 fvres 6925 . . . . . . . . . 10 (𝐷 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
6361, 62syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
64 lbicc2 13504 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
657, 58, 59, 64syl3anc 1373 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐶[,]𝐷))
66 fvres 6925 . . . . . . . . . 10 (𝐶 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6765, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6863, 67oveq12d 7449 . . . . . . . 8 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) = ((𝐹𝐷) − (𝐹𝐶)))
6968oveq1d 7446 . . . . . . 7 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
70693ad2ant1 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7156, 57, 703eqtrd 2781 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
72 simp3 1139 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7372eqcomd 2743 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥))
7419, 61sseldd 3984 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (𝐴(,)𝐵))
7520, 74ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐷) ∈ ℝ)
7620, 2ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℝ)
7775, 76resubcld 11691 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℝ)
7877recnd 11289 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
79783ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
80 dvfre 25989 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8120, 24, 80syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8225feq2d 6722 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
8381, 82mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8483adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8546sselda 3983 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝑥 ∈ (𝐴(,)𝐵))
8684, 85ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
8786recnd 11289 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
88873adant3 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
896, 3resubcld 11691 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐶) ∈ ℝ)
9089recnd 11289 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ∈ ℂ)
91903ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ∈ ℂ)
923, 6posdifd 11850 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐷 ↔ 0 < (𝐷𝐶)))
9311, 92mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐷𝐶))
9493gt0ne0d 11827 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ≠ 0)
95943ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ≠ 0)
9679, 88, 91, 95divmul3d 12077 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9773, 96mpbid 232 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶)))
9897fveq2d 6910 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9990adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℂ)
10087, 99absmuld 15493 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1011003adant3 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
10298, 101eqtrd 2777 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1033, 6, 59abssubge0d 15470 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) = (𝐷𝐶))
104103oveq2d 7447 . . . . . . . 8 (𝜑 → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
1051043ad2ant1 1134 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
106102, 105eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
10787abscld 15475 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
108 dvbdfbdioolem1.k . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
109108adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝐾 ∈ ℝ)
11089adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℝ)
111 0red 11264 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
112111, 89, 93ltled 11409 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷𝐶))
113112adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (𝐷𝐶))
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
115114adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
116 rspa 3248 . . . . . . . . 9 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
117115, 85, 116syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
118107, 109, 110, 113, 117lemul1ad 12207 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
1191183adant3 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
120106, 119eqbrtrd 5165 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12171, 120syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12299abscld 15475 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ∈ ℝ)
1238, 12resubcld 11691 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
124123adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐵𝐴) ∈ ℝ)
12587absge0d 15483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
12699absge0d 15483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘(𝐷𝐶)))
1276, 12, 8, 3, 44, 43le2subd 11883 . . . . . . . . . 10 (𝜑 → (𝐷𝐶) ≤ (𝐵𝐴))
128103, 127eqbrtrd 5165 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
129128adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 12210 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
1311303adant3 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
132102, 131eqbrtrd 5165 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
13371, 132syld3an3 1411 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
134121, 133jca 511 . . 3 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
135134rexlimdv3a 3159 . 2 (𝜑 → (∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))))
13651, 135mpd 15 1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  dom cdm 5685  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  (,)cioo 13387  [,]cicc 13390  abscabs 15273  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025  cnccncf 24902   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvbdfbdioolem2  45944  ioodvbdlimc1lem1  45946  ioodvbdlimc1lem2  45947  ioodvbdlimc2lem  45949
  Copyright terms: Public domain W3C validator