Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem1 44159
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem1.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem1.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem1.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
dvbdfbdioolem1.d (𝜑𝐷 ∈ (𝐶(,)𝐵))
Assertion
Ref Expression
dvbdfbdioolem1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 13325 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
2 dvbdfbdioolem1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
31, 2sselid 3942 . . 3 (𝜑𝐶 ∈ ℝ)
4 ioossre 13325 . . . 4 (𝐶(,)𝐵) ⊆ ℝ
5 dvbdfbdioolem1.d . . . 4 (𝜑𝐷 ∈ (𝐶(,)𝐵))
64, 5sselid 3942 . . 3 (𝜑𝐷 ∈ ℝ)
73rexrd 11205 . . . 4 (𝜑𝐶 ∈ ℝ*)
8 dvbdfbdioolem1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98rexrd 11205 . . . 4 (𝜑𝐵 ∈ ℝ*)
10 ioogtlb 43723 . . . 4 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐶 < 𝐷)
117, 9, 5, 10syl3anc 1371 . . 3 (𝜑𝐶 < 𝐷)
12 dvbdfbdioolem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1312rexrd 11205 . . . . 5 (𝜑𝐴 ∈ ℝ*)
14 ioogtlb 43723 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
1513, 9, 2, 14syl3anc 1371 . . . . 5 (𝜑𝐴 < 𝐶)
16 iooltub 43738 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ (𝐶(,)𝐵)) → 𝐷 < 𝐵)
177, 9, 5, 16syl3anc 1371 . . . . 5 (𝜑𝐷 < 𝐵)
18 iccssioo 13333 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
1913, 9, 15, 17, 18syl22anc 837 . . . 4 (𝜑 → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
20 dvbdfbdioolem1.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21 ax-resscn 11108 . . . . . . 7 ℝ ⊆ ℂ
2221a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2320, 22fssd 6686 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
241a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
25 dvbdfbdioolem1.dmdv . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
26 dvcn 25285 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2722, 23, 24, 25, 26syl31anc 1373 . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
28 cncfcdm 24261 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2922, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
3020, 29mpbird 256 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
31 rescncf 24260 . . . 4 ((𝐶[,]𝐷) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ)))
3219, 30, 31sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) ∈ ((𝐶[,]𝐷)–cn→ℝ))
3319, 24sstrd 3954 . . . . . . 7 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
34 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534tgioo2 24166 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3634, 35dvres 25275 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
3722, 23, 24, 33, 36syl22anc 837 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
38 iccntr 24184 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
393, 6, 38syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
4039reseq2d 5937 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4137, 40eqtrd 2776 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4241dmeqd 5861 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)))
4312, 3, 15ltled 11303 . . . . . . 7 (𝜑𝐴𝐶)
446, 8, 17ltled 11303 . . . . . . 7 (𝜑𝐷𝐵)
45 ioossioo 13358 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4613, 9, 43, 44, 45syl22anc 837 . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4746, 25sseqtrrd 3985 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹))
48 ssdmres 5960 . . . . 5 ((𝐶(,)𝐷) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
4947, 48sylib 217 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝐶(,)𝐷))
5042, 49eqtrd 2776 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝐶(,)𝐷))
513, 6, 11, 32, 50mvth 25356 . 2 (𝜑 → ∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
5241fveq1d 6844 . . . . . . . . 9 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥))
53 fvres 6861 . . . . . . . . 9 (𝑥 ∈ (𝐶(,)𝐷) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐷))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5452, 53sylan9eq 2796 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
5554eqcomd 2742 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
56553adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥))
57 simp3 1138 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)))
586rexrd 11205 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ*)
593, 6, 11ltled 11303 . . . . . . . . . . 11 (𝜑𝐶𝐷)
60 ubicc2 13382 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
617, 58, 59, 60syl3anc 1371 . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶[,]𝐷))
62 fvres 6861 . . . . . . . . . 10 (𝐷 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
6361, 62syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) = (𝐹𝐷))
64 lbicc2 13381 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
657, 58, 59, 64syl3anc 1371 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐶[,]𝐷))
66 fvres 6861 . . . . . . . . . 10 (𝐶 ∈ (𝐶[,]𝐷) → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6765, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶) = (𝐹𝐶))
6863, 67oveq12d 7375 . . . . . . . 8 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) = ((𝐹𝐷) − (𝐹𝐶)))
6968oveq1d 7372 . . . . . . 7 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
70693ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7156, 57, 703eqtrd 2780 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
72 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)))
7372eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥))
7419, 61sseldd 3945 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (𝐴(,)𝐵))
7520, 74ffvelcdmd 7036 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐷) ∈ ℝ)
7620, 2ffvelcdmd 7036 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℝ)
7775, 76resubcld 11583 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℝ)
7877recnd 11183 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
79783ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) ∈ ℂ)
80 dvfre 25315 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8120, 24, 80syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8225feq2d 6654 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
8381, 82mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8483adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
8546sselda 3944 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝑥 ∈ (𝐴(,)𝐵))
8684, 85ffvelcdmd 7036 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
8786recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
88873adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
896, 3resubcld 11583 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐶) ∈ ℝ)
9089recnd 11183 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ∈ ℂ)
91903ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ∈ ℂ)
923, 6posdifd 11742 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐷 ↔ 0 < (𝐷𝐶)))
9311, 92mpbid 231 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐷𝐶))
9493gt0ne0d 11719 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐶) ≠ 0)
95943ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (𝐷𝐶) ≠ 0)
9679, 88, 91, 95divmul3d 11965 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9773, 96mpbid 231 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((𝐹𝐷) − (𝐹𝐶)) = (((ℝ D 𝐹)‘𝑥) · (𝐷𝐶)))
9897fveq2d 6846 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))))
9990adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℂ)
10087, 99absmuld 15339 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1011003adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘(((ℝ D 𝐹)‘𝑥) · (𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
10298, 101eqtrd 2776 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))))
1033, 6, 59abssubge0d 15316 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) = (𝐷𝐶))
104103oveq2d 7373 . . . . . . . 8 (𝜑 → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
1051043ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
106102, 105eqtrd 2776 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) = ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)))
10787abscld 15321 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
108 dvbdfbdioolem1.k . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
109108adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 𝐾 ∈ ℝ)
11089adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐷𝐶) ∈ ℝ)
111 0red 11158 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
112111, 89, 93ltled 11303 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷𝐶))
113112adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (𝐷𝐶))
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
115114adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
116 rspa 3231 . . . . . . . . 9 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
117115, 85, 116syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
118107, 109, 110, 113, 117lemul1ad 12094 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
1191183adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (𝐷𝐶)) ≤ (𝐾 · (𝐷𝐶)))
120106, 119eqbrtrd 5127 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12171, 120syld3an3 1409 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)))
12299abscld 15321 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ∈ ℝ)
1238, 12resubcld 11583 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
124123adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (𝐵𝐴) ∈ ℝ)
12587absge0d 15329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
12699absge0d 15329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → 0 ≤ (abs‘(𝐷𝐶)))
1276, 12, 8, 3, 44, 43le2subd 11775 . . . . . . . . . 10 (𝜑 → (𝐷𝐶) ≤ (𝐵𝐴))
128103, 127eqbrtrd 5127 . . . . . . . . 9 (𝜑 → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
129128adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → (abs‘(𝐷𝐶)) ≤ (𝐵𝐴))
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 12097 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,)𝐷)) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
1311303adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → ((abs‘((ℝ D 𝐹)‘𝑥)) · (abs‘(𝐷𝐶))) ≤ (𝐾 · (𝐵𝐴)))
132102, 131eqbrtrd 5127 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐷) − (𝐹𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
13371, 132syld3an3 1409 . . . 4 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))
134121, 133jca 512 . . 3 ((𝜑𝑥 ∈ (𝐶(,)𝐷) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶))) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
135134rexlimdv3a 3156 . 2 (𝜑 → (∃𝑥 ∈ (𝐶(,)𝐷)((ℝ D (𝐹 ↾ (𝐶[,]𝐷)))‘𝑥) = ((((𝐹 ↾ (𝐶[,]𝐷))‘𝐷) − ((𝐹 ↾ (𝐶[,]𝐷))‘𝐶)) / (𝐷𝐶)) → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴)))))
13651, 135mpd 15 1 (𝜑 → ((abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐷𝐶)) ∧ (abs‘((𝐹𝐷) − (𝐹𝐶))) ≤ (𝐾 · (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  (,)cioo 13264  [,]cicc 13267  abscabs 15119  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvbdfbdioolem2  44160  ioodvbdlimc1lem1  44162  ioodvbdlimc1lem2  44163  ioodvbdlimc2lem  44165
  Copyright terms: Public domain W3C validator